6 research outputs found

    Two-Party Direct-Sum Questions Through the Lens of Multiparty Communication Complexity

    Get PDF
    Direct-sum questions in (two-party) communication complexity ask whether two parties, Alice and Bob, can compute the value of a function f on l inputs (x_1,y_1),...,(x_l,y_l) more efficiently than by applying the best protocol for f, independently on each input (x_i,y_i). In spite of significant efforts to understand these questions (under various communication-complexity measures), the general question is still far from being well understood. In this paper, we offer a multiparty view of these questions: The direct-sum setting is just a two-player system with Alice having inputs x_1,...,x_l, Bob having inputs y_1,...,y_l and the desired output is f(x_1,y_1),...,f(x_l,y_l). The naive solution of solving the l problems independently, is modeled by a network with l (disconnected) pairs of players Alice i and Bob i, with inputs x_i,y_i respectively, and communication only within each pair. Then, we consider an intermediate ("star") model, where there is one Alice having l inputs x_1,...,x_l and l players Bob_1,...,Bob_l holding y_1,...,y_l, respectively (in fact, we consider few variants of this intermediate model, depending on whether communication between each Bob i and Alice is point-to-point or whether we allow broadcast). Our goal is to get a better understanding of the relation between the two extreme models (i.e., of the two-party direct-sum question). If, for instance, Alice and Bob can do better (for some complexity measure) than solving the l problems independently, we wish to understand what intermediate model already allows to do so (hereby understanding the "source" of such savings). If, on the other hand, we wish to prove that there is no better solution than solving the l problems independently, then our approach gives a way of breaking the task of proving such a statement into few (hopefully, easier) steps. We present several results of both types. Namely, for certain complexity measures, communication problems f and certain pairs of models, we can show gaps between the complexity of solving f on l instances in the two models in question; while, for certain other complexity measures and pairs of models, we can show that such gaps do not exist (for any communication problem f). For example, we prove that if only point-to-point communication is allowed in the intermediate "star" model, then significant savings are impossible in the public-coin randomized setting. On the other hand, in the private-coin randomized setting, if Alice is allowed to broadcast messages to all Bobs in the "star" network, then some savings are possible. While this approach does not lead yet to new results on the original two-party direct-sum question, we believe that our work gives new insights on the already-known direct-sum results, and may potentially lead to more such results in the future

    Proceedings of the 14th International Newborn Brain Conference: Neonatal Neurocritical Care, seizures, and continuous aEEG and /or EEG monitoring

    Get PDF

    Membrane Independence of Ultrafast Photochemistry in Pharaonis Halorhodopsin: Testing the Role of Bacterioruberin

    No full text
    Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump–hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna

    Refractory Pseudomonas aeruginosa infections treated with phage PASA16: A compassionate use case series

    No full text
    BACKGROUND: A growing number of compassionate phage therapy cases were reported in the last decade, with a limited number of clinical trials conducted and few unsuccessful clinical trials reported. There is only a little evidence on the role of phages in refractory infections. Our objective here was to present the largest compassionate-use single-organism/phage case series in 16 patients with non-resolving Pseudomonas aeruginosa infections. METHODS: We summarized clinical phage microbiology susceptibility data, administration protocol, clinical data, and outcomes of all cases treated with PASA16 phage. In all intravenous phage administrations, PASA16 phage was manufactured and provided pro bono by Adaptive Phage Therapeutics. PASA16 was administered intravenously, locally to infection site, or by topical use to 16 patients, with data available for 15 patients, mainly with osteoarticular and foreign-device-associated infections. FINDINGS: A few minor side effects were noted, including elevated liver function enzymes and a transient reduction in white blood cell count. Good clinical outcome was documented in 13 out of 15 patients (86.6%). Two clinical failures were reported. The minimum therapy duration was 8 days with a once- to twice-daily regimen. CONCLUSIONS: PASA16 with antibiotics was found to be relatively successful in patients for whom traditional treatment approaches have failed previously. Such pre-phase-1 cohorts can outline potential clinical protocols and facilitate the design of future trials. FUNDING: The study was funded in part by The Israeli Science Foundation IPMP (ISF_1349/20), Rosetrees Trust (A2232), United States-Israel Binational Science Foundation (2017123), and the Milgrom Family Support Program
    corecore