994 research outputs found

    Learning co-operatively : Networking engagement and experience

    Get PDF
    In the UK context, one of the consequences of the new settlements for Further and Higher Education is that post-16 education is becoming ever more limited and limiting. Specifically older candidates potentially engaging with continued or advanced learning for the first time (or those re-entering education following redundancy, forced career change or educational and career interruption) are largely excluded or dissuaded from opportunities. Addressing these needs will require a close partnership between multiple agencies currently affecting educational engagement or delivering qualifications. It will demand a fresh assessment of the role of culture led learning, enterprise learning and citizen inspired knowledge exchange in a relationship with professional educators in both the public and private sector. The Learning Co-operative is a concept currently under investigation via a broad and inclusive collaborative partnership in the Salford City region. It aims to provide an over-arching framework for rhizomatic education and open shell curriculum management and a comprehensive learning progression framework entirely owned by the participant. A careful design perspective and sensitively structured on-line environment incorporating tools for the personalisation and presentation of learning can cut across different types of provision or endeavour and support the concept of a Co-operative Learning Network. There is then the problem of designing learning recognition so that it may be accumulated and transferred as credit reliably between differing contexts. The major consideration in all of this is one of ownership and how might the individual address their learning assets and start to take control of their own representation, future development and investment choices. The emerging concept of a Co-operative Learning Action Network is an idea sponsored by the University of Salford. It moves us towards a common framework for learning recognition and progression; supporting flexible and active life-wide learning through collaborative endeavour and participation

    IGFBP-1 in Cardiometabolic Pathophysiology—Insights From Loss-of-Function and Gain-of-Function Studies in Male Mice

    Get PDF
    We have previously reported that overexpression of human insulin-like growth factor binding protein (IGFBP)-1 in mice leads to vascular insulin sensitization, increased nitric oxide bioavailability, reduced atherosclerosis, and enhanced vascular repair, and in the setting of obesity improves glucose tolerance. Human studies suggest that low levels of IGFBP-1 are permissive for the development of diabetes and cardiovascular disease. Here we seek to determine whether loss of IGFBP-1 plays a causal role in the predisposition to cardiometabolic disease. Metabolic phenotyping was performed in transgenic mice with homozygous knockout of IGFBP-1. This included glucose, insulin, and insulin-like growth factor I tolerance testing under normal diet and high-fat feeding conditions. Vascular phenotyping was then performed in the same mice using vasomotor aortic ring studies, flow cytometry, vascular wire injury, and angiogenesis assays. These were complemented with vascular phenotyping of IGFBP-1 overexpressing mice. Metabolic phenotype was similar in IGFBP-1 knockout and wild-type mice subjected to obesity. Deletion of IGFBP-1 inhibited endothelial regeneration following injury, suggesting that IGFBP-1 is required for effective vascular repair. Developmental angiogenesis was unaltered by deletion or overexpression of IGFBP-1. Recovery of perfusion following hind limb ischemia was unchanged in mice lacking or overexpressing IGFBP-1; however, overexpression of IGFBP-1 stimulated hindlimb perfusion and angiogenesis in insulin-resistant mice. These findings provide new insights into the role of IGFBP-1 in metabolic and vascular pathophysiology. Irrespective of whether loss of IGFBP-1 plays a causal role in the development of cardiometabolic disorders, increasing IGFBP-1 levels appears effective in promoting neovascularization in response to ischemia

    Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop

    Get PDF
    Rationale: In the endothelium, insulin stimulates endothelial NO synthase (eNOS) to generate the antiatherosclerotic signaling radical NO. Insulin-resistant type 2 diabetes mellitus is associated with reduced NO availability and accelerated atherosclerosis. The effect of enhancing endothelial insulin sensitivity on NO availability is unclear. Objective: To answer this question, we generated a mouse with endothelial cell (EC)–specific overexpression of the human insulin receptor (hIRECO) using the Tie2 promoter–enhancer. Methods and Results: hIRECO demonstrated significant endothelial dysfunction measured by blunted endothelium-dependent vasorelaxation to acetylcholine, which was normalized by a specific Nox2 NADPH oxidase inhibitor. Insulin-stimulated phosphorylation of protein kinase B was increased in hIRECO EC as was Nox2 NADPH oxidase–dependent generation of superoxide, whereas insulin-stimulated and shear stress–stimulated eNOS activations were blunted. Phosphorylation at the inhibitory residue Y657 of eNOS and expression of proline-rich tyrosine kinase 2 that phosphorylates this residue were significantly higher in hIRECO EC. Inhibition of proline-rich tyrosine kinase 2 improved insulin-induced and shear stress–induced eNOS activation in hIRECO EC. Conclusions: Enhancing insulin sensitivity specifically in EC leads to a paradoxical decline in endothelial function, mediated by increased tyrosine phosphorylation of eNOS and excess Nox2-derived superoxide. Increased EC insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide. Inhibition of proline-rich tyrosine kinase 2 restores insulin-induced and shear stress–induced NO production. This study demonstrates for the first time that increased endothelial insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide

    Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    Get PDF
    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source

    Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps

    Get PDF
    BACKGROUND: Sunscreens are being widely used to reduce exposure to harmful ultraviolet (UV) radiation. The fact that some sunscreens are photounstable has been known for many years. Since the UV-absorbing ingredients of sunscreens may be photounstable, especially in the long wavelength region, it is of great interest to determine their degradation during exposure to UV radiation. Our aim was to investigate the photostability of seven commercial sunscreen products after natural UV exposure (UVnat) and artificial UV exposure (UVart). METHODS: Seven commercial sunscreens were studied with absorption spectroscopy. Sunscreen product, 0.5 mg/cm(2), was placed between plates of silica. The area under the curve (AUC) in the spectrum was calculated for UVA (320–400 nm), UVA1 (340–400 nm), UVA2 (320–340 nm) and UVB (290–320 nm) before (AUC(before)) and after (AUC(after)) UVart (980 kJ/m(2 )UVA and 12 kJ/m(2 )of UVB) and before and after UVnat. If theAUC Index (AUCI), defined as AUCI = AUC(after)/AUC(before), was > 0.80, the sunscreen was considered photostable. RESULTS: Three sunscreens were unstable after 90 min of UVnat; in the UVA range the AUCI was between 0.41 and 0.76. In the UVB range one of these sunscreens was unstable with an AUCI of 0.75 after 90 min. Three sunscreens were photostable after 120 min of UVnat; in the UVA range the AUCI was between 0.85 and 0.99 and in the UVB range between 0.92 and 1.0. One sunscreen showed in the UVA range an AUCI of 0.87 after UVnat but an AUCI of 0.72 after UVart. Five of the sunscreens were stable in the UVB region. CONCLUSION: The present study shows that several sunscreens are photounstable in the UVA range after UVnat and UVart. There is a need for a standardized method to measure photostability, and the photostability should be marked on the sunscreen product

    Cixutumumab reveals a critical role for IGF-1 in adipose and hepatic tissue remodelling during the development of diet-induced obesity

    Get PDF
    High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance

    Cixutumumab reveals a critical role for IGF-1 in adipose and hepatic tissue remodelling during the development of diet-induced obesity

    Get PDF
    High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance
    • …
    corecore