10,187 research outputs found

    On the Definition of Averagely Trapped Surfaces

    Full text link
    Previously suggested definitions of averagely trapped surfaces are not well-defined properties of 2-surfaces, and can include surfaces in flat space-time. A natural definition of averagely trapped surfaces is that the product of the null expansions be positive on average. A surface is averagely trapped in the latter sense if and only if its area AA and Hawking mass MM satisfy the isoperimetric inequality 16πM2>A16\pi M^2 > A, with similar inequalities existing for other definitions of quasi-local energy.Comment: 4 page

    Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin

    Get PDF
    The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south

    Gravitational radiation from dynamical black holes

    Full text link
    An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.Comment: 5 revtex4 pages. Additional comment

    Quasi-spherical approximation for rotating black holes

    Get PDF
    We numerically implement a quasi-spherical approximation scheme for computing gravitational waveforms for coalescing black holes, testing it against angular momentum by applying it to Kerr black holes. As error measures, we take the conformal strain and specific energy due to spurious gravitational radiation. The strain is found to be monotonic rather than wavelike. The specific energy is found to be at least an order of magnitude smaller than the 1% level expected from typical black-hole collisions, for angular momentum up to at least 70% of the maximum, for an initial surface as close as r=3mr=3m.Comment: revised version, 8 pages, RevTeX, 8 figures, epsf.sty, psfrag.sty, graphicx.st

    (13)C NMR investigation of the superconductor MgCNi_3 up to 800K

    Full text link
    We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et al., Nature (411), 54 (2001)). We found that both the uniform spin susceptibility and the spin fluctuations show a strong enhancement with decreasing temperature, and saturate below ~50K and ~20K respectively. The nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that grows with decreasing magnetic field.Comment: Accepted for publication in Physical Review Letter

    Black holes, cosmological singularities and change of signature

    Get PDF
    There exists a widespread belief that signature type change could be used to avoid spacetime singularities. We show that signature change cannot be utilised to this end unless the Einstein equation is abandoned at the suface of signature type change. We also discuss how to solve the initial value problem and show to which extent smooth and discontinuous signature changing solutions are equivalent.Comment: 14pages, Latex, no figur

    The Role of Judges in Election Law

    Get PDF

    The Role of Judges in Election Law

    Get PDF

    Hamiltonians for Reduced Gravity

    Get PDF
    A generalised canonical formulation of gravity is devised for foliations of spacetime with codimension n≄1n\ge1. The new formalism retains n-dimensional covariance and is especially suited to 2+2 decompositions of spacetime. It is also possible to use the generalised formalism to obtain boundary contributions to the 3+1 Hamiltonian.Comment: 18 pages, revtex, 3 postscript figures include
    • 

    corecore