1,049 research outputs found

    Angiographic outcome of coronary artery bypass grafts: Radial Artery Database International Alliance

    Get PDF
    BACKGROUND: We used a large patient-level dataset including six angiographic randomized trials (RCTs) on coronary artery bypass conduits to explore incidence and determinants of coronary graft failure. METHODS: Patient-level angiographic data of six RCTs comparing long-term outcomes of the radial artery and other conduits were joined. Primary outcome was graft occlusion at maximum follow-up. The analysis was divided as follows: 1) left anterior descending coronary (LAD) distribution, 2) non-LAD distribution (circumflex and right coronary artery). To identify predictors of graft occlusion, mixed model multivariable Cox regression including all baseline characteristics with stratification by individual trials was used. RESULTS: 1091 patients and 2281 grafts were included (921 left internal mammary arteries, 74 right internal mammary arteries, 710 radial artery and 576 saphenous veins; all left internal mammary arteries were used on the LAD, the other conduits were used on the non-LAD distribution; mean angiographic follow up: 65±29 months). Occlusion rate was 2.3%, 13.5%, 9.4%, 17.5% for the left internal mammary arteries, right internal mammary arteries, radial artery and saphenous veins, respectively. At multivariable analysis type of conduit used, age, female gender, left ventricular ejection fraction<50% and use of the Y graft were significantly associated with graft occlusion in the non-LAD distribution. CONCLUSIONS: Our analyses showed that failure of the left internal mammary arteries to LAD bypass is a very uncommon event. For the non-LAD distribution, the non-use of radial artery, age, female gender, left ventricular ejection fraction<50% and use of the Y graft configuration were significantly associated with mid-term graft failure

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces

    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e49474, doi:10.1371/journal.pone.0049474.Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.This work was funded in part by a Fulbright Fellowship administered by Fulbright New Zealand and the U.S. Department of State, awarded in 2011 to EKB. Funding and support for research expedition was provided by Land Information New Zealand, New Zealand Ministry of Fisheries, NIWA, Census of Marine Life on Seamounts (CenSeam), and the Foundation for Research, Science and Technology. Other research funding was provided by the New Zealand Ministry of Science and Innovation project “Impacts of resource use on vulnerable deep-sea communities” (FRST contract CO1X0906), the National Science Foundation (OCE-0647612), and the Deep Ocean Exploration Institute (Fellowship support to TMS)

    Developing community-driven quality improvement initiatives to enhance chronic disease care in Indigenous communities in Canada : the FORGE AHEAD program protocol

    Get PDF
    BACKGROUND: Given the dramatic rise and impact of chronic diseases and gaps in care in Indigenous peoples in Canada, a shift from the dominant episodic and responsive healthcare model most common in First Nations communities to one that places emphasis on proactive prevention and chronic disease management is urgently needed. METHODS: The Transformation of Indigenous Primary Healthcare Delivery (FORGE AHEAD) Program partners with 11 First Nations communities across six provinces in Canada to develop and evaluate community-driven quality improvement (QI) initiatives to enhance chronic disease care. FORGE AHEAD is a 5-year research program (2013-2017) that utilizes a pre-post mixed-methods observational design rooted in participatory research principles to work with communities in developing culturally relevant innovations and improved access to available services. This intensive program incorporates a series of 10 inter-related and progressive program activities designed to foster community-driven initiatives with type 2 diabetes mellitus as the action disease. Preparatory activities include a national community profile survey, best practice and policy literature review, and readiness tool development. Community-level intervention activities include community and clinical readiness consultations, development of a diabetes registry and surveillance system, and QI activities. With a focus on capacity building, all community-level activities are driven by trained community members who champion QI initiatives in their community. Program wrap-up activities include readiness tool validation, cost-analysis and process evaluation. In collaboration with Health Canada and the Aboriginal Diabetes Initiative, scale-up toolkits will be developed in order to build on lessons-learned, tools and methods, and to fuel sustainability and spread of successful innovations. DISCUSSION: The outcomes of this research program, its related cost and the subsequent policy recommendations, will have the potential to significantly affect future policy decisions pertaining to chronic disease care in First Nations communities in Canada. TRIAL REGISTRATION: Current ClinicalTrial.gov protocol ID NCT02234973 . Date of Registration: July 30, 2014

    Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors

    Get PDF
    Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities

    Repetitive N-WASP–Binding Elements of the Enterohemorrhagic Escherichia coli Effector EspFU Synergistically Activate Actin Assembly

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) generate F-actin–rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspFU, a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspFU repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspFU are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspFU fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspFU. Whereas clustering of a single EspFU repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspFU derivatives promote actin assembly more efficiently. Moreover, the EspFU repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3–mediated signaling pathways

    Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP

    Get PDF
    The inhibitor of apoptosis protein, XIAP, is frequently overexpressed in chemoresistant human tumours. An antisense oligonucleotide (AEG 35156/GEM 640) that targets XIAP has recently entered phase I trials in the UK. Method validation data are presented on three pharmacodynamic assays that will be utilised during this trial. Quantitative RT-PCR was based on a Taqman assay and was confirmed to be specific for XIAP. Assay linearity extended over four orders of magnitude. MDA-MB-231/U6-E1 cells and clone X-G4 stably expressing an RNAi vector against XIAP were chosen as high and low XIAP expression quality controls (QCs). Within-day and between-day coefficients of variation (CVs) in precision for cycle threshold (CT) and delta CT values (employing GAPDH and beta 2 microglobulin as housekeepers) were always less than 10%. A Western blotting technique was validated using a GST–XIAP fusion protein as a standard and HeLa cells and SF268 (human glioblastoma) cells as high and low XIAP expression QCs. Specificity of the final choice of antibody for XIAP was evaluated by analysing a panel of cell lines including clone X-G4. The assay was linear over a 29-fold range of protein concentration and between-day precision was 29% for the low QC and 23% for the high QC when normalised to GAPDH. XIAP protein was also shown to be stable at −80°C for at least 60 days. M30-Apoptosense™ plasma Elisa detects a caspase-cleaved fragment of cytokeratin 18 (CK18), believed to be a surrogate marker for tumour cell apoptosis. Generation of an independent QC was achieved through the treatment of X-G4 cells with staurosporine and collection of media. Measurements on assay precision and kit-to-kit QC were always less than 10%. The M30 antigen (CK18-Asp396) was stable for 3 months at −80°C, while at 37°C it had a half-life of 80–100 h in healthy volunteer plasma. Results from the phase I trial are eagerly awaited
    corecore