1,342 research outputs found

    Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals

    Get PDF
    © 2017 The Author(s). Background: Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Results: Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. Conclusions: The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions

    Complement C3 variant and the risk of age-related macular degeneration

    Get PDF
    Background: Age-related macular degeneration is the most common cause of blindness in Western populations. Susceptibility is influenced by age and by genetic and environmental factors. Complement activation is implicated in the pathogenesis.Methods: We tested for an association between age-related macular degeneration and 13 single-nucleotide polymorphisms (SNPs) spanning the complement genes C3 and C5 in case subjects and control subjects from the southeastern region of England. All subjects were examined by an ophthalmologist and had independent grading of fundus photographs to confirm their disease status. To test for replication of the most significant findings, we genotyped a set of Scottish cases and controls.Results: The common functional polymorphism rs2230199 (Arg80Gly) in the C3 gene, corresponding to the electrophoretic variants C3S (slow) and C3F (fast), was strongly associated with age-related macular degeneration in both the English group (603 cases and 350 controls, P=5.9 x 10(sup -5)) and the Scottish group (244 cases and 351 controls, P=5.0 x 10(sup -5)). The odds ratio for age-related macular degeneration in C3 S/F heterozygotes as compared with S/S homozygotes was 1.7 (95% confidence interval [CI], 1.3 to 2.1); for F/F homozygotes, the odds ratio was 2.6 (95% CI, 1.6 to 4.1). The estimated population attributable risk for C3F was 22%.Conclusions: Complement C3 is important in the pathogenesis of age-related macular degeneration. This finding further underscores the influence of the complement pathway in the pathogenesis of this disease

    A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase

    Get PDF
    Background: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2. © 2016 The Author(s)

    Predicting the diagnosis of autism in adults using the Autism-Spectrum Quotient (AQ) questionnaire

    Get PDF
    This work was supported by a National Institute for Health Research (NIHR) programme grant (RP-PG-0606-1045), by the BGC as well as by the European Union via the EU-AIMS consortium. J.H. was supported by the Wellcome Trust and by the Biomedical Research Centre (BRC) at King's College London. D.G.M was supported by the Dr Mortimer D. Sackler Foundation. P.B was supported by an NIHR Senior Investigator award and the BRC in Mental Health at the South London and Maudsley NHS Trust. C.E.W receives postdoctoral research funding via the Marie Curie Action, co-financed by the Junta de Andalucía and the European Commission under Talentia Postdoc grant number 267 226. The authors acknowledge financial support from the Department of Health via the NIHR BRC and Dementia Unit awarded to South London and Maudsley NHS Foundation Trust, in partnership with King's College London and King's College Hospital NHS Foundation Trust. This work was supported by EU-AIMS (European Autism Interventions), which receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115300, the resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (grant FP7/2007-2013), from the European Federation of Pharmaceutical Industries and Associations companies’ in-kind contributions, and from Autism Speaks

    Haptic Edge Detection Through Shear

    Get PDF
    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals

    Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand

    Get PDF
    Introduction Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. Aims To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. Results Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. Conclusions 1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes

    HER-2, p53, p21 and hormonal receptors proteins expression as predictive factors of response and prognosis in locally advanced breast cancer treated with neoadjuvant docetaxel plus epirubicin combination

    Get PDF
    BACKGROUND: Neoadjuvant chemotherapy has been considered the standard care in locally advanced breast cancer. However, about 20% of the patients do not benefit from this clinical treatment and, predictive factors of response were not defined yet. This study was designed to evaluate the importance of biological markers to predict response and prognosis in stage II and III breast cancer patients treated with taxane and anthracycline combination as neoadjuvant setting. METHODS: Sixty patients received preoperative docetaxel (75 mg/m(2)) in combination with epirubicin (50 mg/m(2)) in i.v. infusion in D1 every 3 weeks after incisional biopsy. They received adjuvant chemotherapy with CMF or FEC, attaining axillary status following definitive breast surgery. Clinical and pathologic response rates were measured after preoperative therapy. We evaluated the response rate to neoadjuvant chemotherapy and the prognostic significance of clinicopathological and immunohistochemical parameters (ER, PR, p51, p21 and HER-2 protein expression). The median patient age was 50.5 years with a median follow up time 48 months after the time of diagnosis. RESULTS: Preoperative treatment achieved clinical response in 76.6% of patients and complete pathologic response in 5%. The clinical, pathological and immunohistochemical parameters were not able to predict response to therapy and, only HER2 protein overexpression was associated with a decrease in disease free and overall survival (P = 0.0007 and P = 0.003) as shown by multivariate analysis. CONCLUSION: Immunohistochemical phenotypes were not able to predict response to neoadjuvant chemotherapy. Clinical response is inversely correlated with a risk of death in patients submitted to neoadjuvant chemotherapy and HER2 overexpression is the major prognostic factor in stage II and III breast cancer patients treated with a neoadjuvant docetaxel and epirubicin combination

    Comparative Effectiveness of Guidelines for the Management of Hyperlipidemia and Hypertension for Type 2 Diabetes Patients

    Get PDF
    Background: Several guidelines to reduce cardiovascular risk in diabetes patients exist in North America, Europe, and Australia. Their ability to achieve this goal efficiently is unclear. Methods and Findings: Decision analysis was used to compare the efficiency and effectiveness of international contemporary guidelines for the management of hypertension and hyperlipidemia for patients aged 40-80 with type 2 diabetes. Measures of comparative effectiveness included the expected probability of a coronary or stroke event, incremental medication costs per event, and number-needed-to-treat (NNT) to prevent an event. All guidelines are equally effective, but they differ significantly in their medication costs. The range of NNT to prevent an event was small across guidelines (6.5-7.6 for males and 6.5-7.5 for females); a larger range of differences were observed for expected cost per event avoided (ranges, 117,269−117,269-157,186 for males and 115,999−115,999-163,775 for females). Australian and U.S. guidelines result in the highest and lowest expected costs, respectively. Conclusions: International guidelines based on the same evidence and seeking the same goal are similar in their effectiveness; however, there are large differences in expected medication costs. © 2011 Shah et al
    • …
    corecore