2 research outputs found

    Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco

    No full text
    Daily hydrological modelling is among the most challenging tasks in water resource management, particularly in terms of streamflow prediction in semi-arid areas. Various methods were applied in order to deal with this complex phenomenon, but recently data-driven models have taken a better space, given their ability to solve prediction problems in time series. In this study, we have employed the Long Short-Term Memory (LSTM) network to simulate the daily streamflow over the Ait Ouchene watershed (AIO) in the Oum Er-Rbia river basin in Morocco, based on a temporal sequence of in situ and remotely sensed hydroclimatic data ranging from 2001 to 2010. The analysis adopted in this work is based on three-dimension input required by the LSTM model (1); the input samples used three splitting approaches: 70% of the dataset as training, splitting the data considering the hydrological year and the cross-validation method; (2) the sequence length; (3) and the input features using two different scenarios. The prediction results demonstrate that the LSTM performs poorly using the default data input scenario, whereas the best results during the testing were found in a sequence length of 30 days using approach 3 (R2 = 0.58). In addition, the LSTM fed with the lagged data input scenario using the Forward Feature Selection (FFS) method provides high performance accuracy using approach 2 (R2 = 0.84) in a sequence length of 20 days. Eventually, in applications related to water resources management where data are limited, the use of the deep learning technique is able to create high predictive accuracy, which can be enhanced with the right combination subset of features by using FFS

    High-Resolution Monitoring of the Snow Cover on the Moroccan Atlas through the Spatio-Temporal Fusion of Landsat and Sentinel-2 Images

    No full text
    Mapping seasonal snow cover dynamics provides essential information to predict snowmelt during spring and early summer. Such information is vital for water supply management and regulation by national stakeholders. Recent advances in remote sensing have made it possible to reliably estimate and quantify the spatial and temporal variability of snow cover at different scales. However, because of technological constraints, there is a compromise between the temporal, spectral, and spatial resolutions of available satellites. In addition, atmospheric conditions and cloud contamination may increase the number of missing satellite observations. Therefore, data from a single satellite is insufficient to accurately capture snow dynamics, especially in semi-arid areas where snowfall is extremely variable in both time and space. Considering these limitations, the combined use of the next generation of multispectral sensor data from the Landsat-8 (L8) and Sentinel-2 (S2), with a spatial resolution ranging from 10 to 30 m, provides unprecedented opportunities to enhance snow cover mapping. Hence, the purpose of this study is to examine the effectiveness of the combined use of optical sensors through image fusion techniques for capturing snow dynamics and producing detailed and dense normalized difference snow index (NDSI) time series within a semi-arid context. Three different models include the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), the flexible spatio-temporal data fusion model (FSDAF), and the pre-classification flexible spatio-temporal data fusion model (pre-classification FSDAF) were tested and compared to merge L8 and S2 data. The results showed that the pre-classification FSDAF model generates the most accurate precise fused NDSI images and retains spatial detail compared to the other models, with the root mean square error (RMSE = 0.12) and the correlation coefficient (R = 0.96). Our results reveal that, the pre-classification FSDAF model provides a high-resolution merged snow time series and can compensate the lack of ground-based snow cover data
    corecore