21 research outputs found

    Statistical investigation of VLF quasiperiodic emissions measured by the DEMETER spacecraft

    Full text link
    International audienceWe present a survey of quasiperiodic (QP) ELF/VLF emissions detected onboard the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite (altitude of about 700 km, nearly Sun-synchronous orbit at 10:30/22:30 LT). Six years of data have been visually inspected for the presence of QP emissions with modulation periods higher than 10 s and with frequency bandwidths higher than 200 Hz. It is found that these QP events occur in about 5% of daytime half orbits, while they are basically absent during the night. The events occur predominantly during quiet geomagnetic conditions following the periods of enhanced geomagnetic activity. Their occurrence and properties are systematically analyzed. QP emissions occur most often at frequencies from about 750 Hz to 2 kHz, but they may be observed at frequencies as low as 500 Hz and as high as 8 kHz. Modulation periods of QP events may range from about 10 to 100 s, with typical values of 20 s. Frequency drifts of the identified events are generally positive, but they are lower for events with larger modulation periods. The events are usually limited to higher L values (L > 2). The upper L shell boundary of their occurrence could not be identified using the DEMETER data, but they are found to extend up to at least L ~ 6. The occurrence rate of the events is significantly lower at the longitudes of the South Atlantic anomaly (by a factor of more than 2)

    A general Cluster data and global MHD simulation comparison

    Get PDF
    Among the many challenges facing the space weather modelling community today, is the need for validation and verification methods of the numerical models available describing the complex nonlinear Sun-Earth system. Magnetohydrodynamic (MHD) models represent the latest numerical models of this environment and have the unique ability to span the enormous distances present in the magnetosphere, from several hundred kilometres to several thousand kilometres above the Earth’s surface. This makes it especially difficult to develop verification and validation methods which posses the same range spans as the models. In this paper we present a first general large-scale comparison between four years (2001–2004) worth of in situ Cluster plasma observations and the corresponding simulated predictions from the coupled Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code. The comparison between the in situ measurements and the model predictions reveals that by systematically constraining the MHD model inflow boundary conditions a good correlation between the in situ observations and the modeled data can be found. These results have an implication for modelling studies addressing also smaller scale features of the magnetosphere. The global MHD simulation can therefore be used to place localised satellite and/or ground-based observations into a global context and fill the gaps left by measurements

    Location and size of the global source region of whistler mode chorus

    Full text link
    International audience[1] We use multicomponent measurements of the four Cluster spacecraft and a backward ray tracing simulation to estimate the location and size of the global source of whistler mode chorus emissions in the magnetic equatorial plane. For the first time, analysis is made in a broad range of latitudes in both hemispheres along a single Cluster orbit. Our results show that for different time intervals, the sizes of the observed portions of the global chorus source region in the equatorial plane varied between 0.4 and 1.5 Earth radii. They were found at radial distances between 4.5 and 8.2 Earth radii during 2 h of measurements. Therefore, the superposed minimum width of the global source region of whistler mode chorus in the magnetic equatorial plane is approximately 4 Earth radii. Citation: Hayosh, M., O. Santolík, and M. Parrot (2010), Location and size of the global source region of whistler mode chorus

    Conjugate observations of quasi-periodic emissions by Cluster and DEMETER spacecraft

    Full text link
    International audienceQuasi-periodic (QP) emissions are electromagnetic emissions at frequencies of about 0.5-4 kHz that are characterized by a periodic time modulation of the wave intensity. Typical periods of this modulation are on the order of minutes. We present a case study of a large-scale long-lasting QP event observed simultaneously on board the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) and the Cluster spacecraft. The measurements by the Wide-Band Data instrument on board the Cluster spacecraft enabled us to obtain high-resolution frequency-time spectrograms of the event close to the equatorial region over a large range of radial distances, while the measurements by the STAFF-SA instrument allowed us to perform a detailed wave analysis. Conjugate observations by the DEMETER spacecraft have been used to estimate the spatial and temporal extent of the emissions. The analyzed QP event lasted as long as 5 h and it spanned over the L-shells from about 1.5 to 5.5. Simultaneous observations of the same event by DEMETER and Cluster show that the same QP modulation of the wave intensity is observed at the same time at very different locations in the inner magnetosphere. ULF magnetic field fluctuations with a period roughly comparable to, but somewhat larger than the period of the QP modulation were detected by the fluxgate magnetometers instrument on board the Cluster spacecraft near the equatorial region, suggesting these are likely to be related to the QP generation. Results of a detailed wave analysis show that the QP emissions detected by Cluster propagate unducted, with oblique wave normal angles at higher geomagnetic latitudes

    Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments

    Full text link
    International audienceWe present a detailed analysis of a long-lasting quasiperiodic (QP) event observed simultaneously by the low-altitude DEMETER spacecraft and on the ground by the instrumentation of the Sodankylä Geophysical Observatory, Finland. The event was observed on 26 February 2008. It lasted for several hours, and it was detected both in the Northern and Southern Hemispheres. The time intervals when the event was observed on board the satellite and/or on the ground provide us with an estimate of the event dimensions. When the event is detected simultaneously by the satellite and on the ground, the observed frequency-time structure is generally the same. However, the ratio of detected intensities varies significantly as a function of the spacecraft latitude, indicating the wave guiding along the plasmapause. Moreover, there is a delay as large as about 13 s between the times when individual QP elements are detected by the spacecraft and on the ground. This appears to be related to the azimuthal separation of the instruments, and it is highly relevant to the identification of a possible source mechanism. We suggest that it is due to an azimuthally propagating ULF wave which periodically modulates the azimuthally extended source region. Finally, we find that at the times when the intensity of the QP event suddenly increases, there is a distinct increase of the amplitude of Alfvénic ULF pulsations measured on the ground at high latitudes. This might indicate that the source region is located at L shells larger than about 7.1

    Equatorial Noise Emissions and Their Quasi-Periodic Modulation

    Full text link
    International audienceEquatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic structure related to the ion cyclotron frequency in the source region. We analyze more than 2000 EN events observed by the wave instruments on board the Cluster spacecraft, and we find that about 5% of EN events are not continuous in time, but exhibit a quasi-periodic (QP) modulation of the wave intensity. Typical modulation periods are on the order of minutes. The events predominantly occur in the noon-to-dawn local time sector, and their occurrence is related to the periods of increased geomagnetic activity and higher solar wind speeds. We suggest that the QP modulation of EN events may be due to compressional ULF pulsations, which periodically modulate the wave growth in the source region. These compressional ULF pulsations were identified in about half of the events. Finally, we demonstrate that EN emissions with QP modulation of the wave intensity can propagate down to altitudes as low as 700 km

    Survey of magnetospheric line radiation events observed by the DEMETER spacecraft

    Full text link
    International audienceMagnetospheric line radiation (MLR) events are electromagnetic waves in the frequency range between about 1 and 8 kHz that, when presented as a frequency‐time spectrogram, take the form of nearly parallel and clearly defined lines, which sometimes drift slightly in frequency. They have been observed both by satellites and ground‐based instruments, but their origin is still unclear. We present a survey of these MLR waves observed by the DEMETER spacecraft (at an altitude of about 700 km). Three years of VLF Survey mode data were manually searched for MLR events, creating the largest event satellite database of about 650 events, which was then used to investigate the wave properties and geographical occurrence. Finally, the most favorable geomagnetic conditions (Kp and Dst indices) for the occurrence of MLR events have been found. It is shown that MLR events occur mostly at L > 2 (upper limit is given by a limitation of the spacecraft), they occur primarily inside the plasmasphere, and there is a lower number of events occurring over the Atlantic Ocean than elsewhere on the globe. The MLR events occur more often during the day and usually during, or after, periods of higher magnetic activity. Their frequencies usually lay between about 2 and 6 kHz, with the total frequency bandwidth of an observation being below 2 kHz in the majority of cases. Moreover, it is shown that the longitudinal dimensions of the MLR events can be as large as 100° and they can last for up to a few hours. Finally, we discuss a possibility that MLR events may be triggered by power line harmonic radiation (PLHR) and we report an event supporting this hypothesis

    Anticorrelation between whistler occurrence and MLR and QP emissions

    Full text link
    International audienceWe investigate a possible influence of lightning-generated whistlers on the occurrence of selected whistler mode emissions in the inner magnetosphere. Specifically, we focus on Magnetospheric Line Radiation (MLR) and Quasiperiodic (QP) emissions, i.e., electromagnetic waves at frequencies of a few kHz with a clear frequency/time modulation of the wave intensity. We use the data from the low altitude satellite DEMETER (2004-2010) to demonstrate that the occurrence of both these emissions exhibits a clear seasonal dependence, with a minimum during the northern summer. We argue that this dependence follows the global distribution of lighting-generated whistlers. Further, we use the whistler occurrence rate data obtained by the neural network on board DEMETER to directly compare whistler occurrence in the presence and in the absence of MLR/QP emissions. It is shown that the whistler occurrence rate as detected by the neural network is significantly lower in the presence of MLR/QP emissions than normally. We discuss whether this is due to a lower efficiency of whistler identification in the presence of MLR/QP emissions or whether this is a real effect suggesting a possible controlling role of whistlers for the occurrence of other electromagnetic emissions

    Anticorrelation between whistler occurrence and MLR and QP emissions

    Full text link
    International audienceWe investigate a possible influence of lightning-generated whistlers on the occurrence of selected whistler mode emissions in the inner magnetosphere. Specifically, we focus on Magnetospheric Line Radiation (MLR) and Quasiperiodic (QP) emissions, i.e., electromagnetic waves at frequencies of a few kHz with a clear frequency/time modulation of the wave intensity. We use the data from the low altitude satellite DEMETER (2004-2010) to demonstrate that the occurrence of both these emissions exhibits a clear seasonal dependence, with a minimum during the northern summer. We argue that this dependence follows the global distribution of lighting-generated whistlers. Further, we use the whistler occurrence rate data obtained by the neural network on board DEMETER to directly compare whistler occurrence in the presence and in the absence of MLR/QP emissions. It is shown that the whistler occurrence rate as detected by the neural network is significantly lower in the presence of MLR/QP emissions than normally. We discuss whether this is due to a lower efficiency of whistler identification in the presence of MLR/QP emissions or whether this is a real effect suggesting a possible controlling role of whistlers for the occurrence of other electromagnetic emissions
    corecore