13,621 research outputs found
Leadership Behaviour and Upward Feedback: Findings from a Longitudinal Intervention
A sample of 48 managers and 308 staff members of a community health care organization took part in a study to investigate the influence of participating in an upward feedback program on leadership behaviour, both as indicated be self-ratings and subordinates’ ratings. The research design consisted of three measurement points within one year. The intervention included managers receiving upward feedback and a management skills workshop. The results showed a negative effect of the program on leadership behaviour as rated by the staff. Furthermore, managers reduced their self-ratings in the condition where they participated in both a feedback session and an management skills workshop.Management;Leadership Behaviour;Self-rating;Upward Feedback
A comparison between the MEXE and Pippard's methods of assessing the load carrying capacity of masonry arch bridges
The Military Engineering eXperimental Establishment (MEXE) method is a long established system of masonry arch load carrying capacity assessment. It has been subject to review in recent years and some shortcomings have been identified. There is now growing consensus that the current version of MEXE overestimates the load carrying capacity of short span bridges, but for spans over 12m it becomes increasingly conservative. In this paper Pippard’s elastic method and the MEXE method are used to investigate the significance of factors such as fill cover, ring thickness and effective width of arch barrel, and their effect upon the load-carrying capacity predictions in short and long span arches. Conclusions are drawn which establish directions of new research and offer guidance to assessors of short and long span masonry arch bridges
Remote water monitoring system
A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis
Recommended from our members
Inverse transformed encoding models - A solution to the problem of correlated trial-by-trial parameter estimates in fMRI decoding
Techniques of multivariate pattern analysis (MVPA) can be used to decode the discrete experimental condition or a continuous modulator variable from measured brain activity during a particular trial. In functional magnetic resonance imaging (fMRI), trial-wise response amplitudes are sometimes estimated from the measured signal using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related designs with trials closely spaced in time, those estimates are highly variable and serially correlated due to the temporally extended shape of the hemodynamic response function (HRF). Here, we describe inverse transformed encoding modelling (ITEM), a principled approach of accounting for those serial correlations and decoding from the resulting estimates, at low computational cost and with no loss in statistical power. We use simulated data to show that ITEM outperforms the current standard approach in terms of decoding accuracy and analyze empirical data to demonstrate that ITEM is capable of visual reconstruction from fMRI signals
A new view of quiet-Sun topology from Hinode/SOT
Context.
With the recent launch of the Hinode satellite our view of the nature and evolution of quiet-Sun regions has been improved. In light of the new high resolution observations, we revisit the study of the quiet Sun's topological nature.
Aims.
Topology is a tool to explain the complexity of the magnetic field, the occurrence of reconnection processes, and the heating of the corona. This Letter aims to give new insights to these different topics.
Methods.
Using a high-resolution Hinode/SOT observation of the line-of-sight magnetic field on the photosphere, we calculate the three dimensional magnetic field in the region above assuming a potential field. From the 3D field, we determine the existence of null points in the magnetic configuration.
Results.
From this model of a continuous field, we find that the distribution of null points with height is significantly different from that reported in previous studies. In particular, the null points are mainly located above the bottom boundary layer in the photosphere (54%) and in the chromosphere (44%) with only a few null points in the corona (2%). The density of null points (expressed as the ratio of the number of null points to the number of photospheric magnetic fragments) in the solar atmosphere is estimated to be between 3% and 8% depending on the method used to identify the number of magnetic fragments in the observed photosphere.
Conclusions.
This study reveals that the heating of the corona by magnetic reconnection at coronal null points is unlikely. Our findings do not rule out the heating of the corona at other topological features. We also report the topological complexity of the chromosphere as strongly suggested by recent observations from Hinode/SOT
Ultrasonic scanning system for in-place inspection of brazed-tube joints
System detects defects of .051 cm in diameter and larger. System incorporates scanning head assembly including boot enclosed transducer, slip ring assembly, drive mechanism, and servotransmitter. Ultrasonic flaw detector, prototype recorder, and special recorder complete system
Ultrasonic scanning system for in-place inspection of brazed tube joints
A miniaturized ultrasonic scanning system for nondestructive in-place, non-immersion testing of brazed joints in stainless-steel tubing is described. The system is capable of scanning brazed tube joints, with limited clearance access, in 1/4 through 5/8 inch union, tee, elbow and cross configurations. The system has the capability to detect defective conditions now associated with material density changes in addition to those which are depended upon density variations. The system includes a miniaturized scanning head assembly that fits around a tube joint and rotates the transducer around and down the joint in a continuous spiral motion. The C-scan recorder is similar in principle to conventional models except that it was specially designed to track the continuous spiral scan of the tube joint. The scanner and recorder can be operated with most commercially available ultrasonic flaw detectors
Homogenization for advection-diffusion in a perforated domain
The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylor–Green velocity field
Alien Registration- Haynes, Pearl C. (Auburn, Androscoggin County)
https://digitalmaine.com/alien_docs/31101/thumbnail.jp
- …