33 research outputs found

    Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice

    No full text
    Macrophage foam cells are integral in the development of atherosclerotic lesions. Gene expression analysis of lesional macrophage foam cells is complicated by the cellular heterogeneity of atherosclerotic plaque and the presence of lesions of various degrees of severity. To overcome these limitations, we tested the ability of laser capture microdissection (LCM) and real-time quantitative reverse transcription PCR to selectively analyze RNA from lesional macrophages of apolipoprotein E (apoE)-deficient mice. Proximal aortic tissue sections were immunostained for macrophagespecific CD68/macrosialin by a rapid (≈15-min) protocol. Alternating sections from each animal were used to isolate RNA either from entire sections (analogous to isolation from whole tissue) or by LCM selection of CD68-positive cells. We measured the mRNA levels of CD68, a macrophage-specific marker, α-actin, a smooth muscle cell marker, and cyclophilin A, a control gene. Compared with whole sections, CD68 mRNA levels were greatly enriched (33.6-fold) in the laser-captured lesional macrophages. In contrast to whole sections, LCM-derived RNA had undetectable levels of α-actin. To illustrate the ability of this method to measure changes in lesional macrophage gene expression, we injected 100 μg of lipopolysaccharide i.p. into apoE-deficient mice and detected in laser-captured lesional macrophages increased mRNA expression for vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, and monocyte chemoattractant protein-1 (11.9-, 32.5-, and 31.0-fold, respectively). By selectively enriching foam cell RNA, LCM provides a powerful approach to study the in situ expression and regulation of atherosclerosis-related genes. This approach will allow the study of macrophage gene expression under various conditions of plaque formation, regression, and response to genetic and environmental perturbations

    Effects of anacetrapib on plasma lipids in specific patient subgroups in the DEFINE (Determining the efficacy and tolerability of CETP INhibition with AnacEtrapib) trial

    No full text
    BACKGROUND: In the Determining the Efficacy and Tolerability of cholesteryl ester transfer protein (CETP) INhibition with AnacEtrapib (DEFINE) trial, anacetrapib added to statin produced robust low-density lipoprotein cholesterol (LDL-C)-lowering and high-density lipoprotein cholesterol (HDL-C)-raising vs placebo in patients with coronary heart disease (CHD). Predictors of the degree of LDL-C and HDL-C responses to anacetrapib, however, are poorly understood. OBJECTIVE: Lipid effects of anacetrapib in patient subgroups within the DEFINE trial (clinicaltrials.gov: NCT00685776) are reported. METHODS: The percent of placebo-corrected changes from baseline for LDL-C (estimated by Friedewald calculation [Fc-LDL-C]) and HDL-C after 24 weeks of anacetrapib 100 mg/day were compared among patients by age, gender, race, diabetes status, type of concomitant statin with or without other lipid therapies, and baseline HDL-C, Fc-LDL-C, and triglyceride (TG) levels. RESULTS: Percent decreases in Fc-LDL-C and increases in HDL-C with anacetrapib were similar (magnitude of difference generall
    corecore