116 research outputs found

    Investigating the photophysics of solar energy conversion materials using ultrafast optical, X-ray, and Mössbauer spectroscopies

    Get PDF
    Improving the function of solar energy conversion devices made from durable, earth-abundant materials is necessary to make solar technology an integral part of a clean, renewable energy strategy. Energy conversion in photovoltaic and photocatalytic materials begins with the formation of excitons and/or free carriers, and the fates of these transient species – whether or not they can be separated and extracted before they recombine – is what ultimately determines conversion efficiency. Thus, a thorough understanding of the dynamics of charge separation, migration, and recombination on timescales ranging from femtoseconds to microseconds is crucial for guiding the design of next-generation materials. To this end, our group employs a variety of cross-regime ultrafast transient absorption spectroscopies to characterize these dynamics. By combining ultrafast optical, terahertz, and X-ray pulses in different experimental configurations, we can probe a broad manifold of transient chemical and physical properties of materials as they evolve during photochemical or thermochemical processes. The insights gained from these techniques collectively give a picture of how solar energy conversion materials work and what properties could be targeted to improve performance. In this talk I will give an overview of optical and X-ray transient absorption spectroscopies and provide a few examples of transition metal complexes and oxides that we have studied using this technique. I will conclude with a discussion of time-resolved synchrotron radiation Mössbauer spectroscopy, an entirely novel transient absorption technique for studying solid state materials that we are currently developing in collaboration with Rhode Island College and Argonne National Laboratory

    Catalytic Thermal Decomposition of NO2 by Iron(III) Nitrate Nonahydrate-Doped Poly(Vinylidene Difluoride)

    Get PDF
    The products of thermal decomposition of iron nitrate nonahydrate doped into poly(vinylidene difluoride) are examined using Mössbauer spectroscopy. Very little of the expected nitrogen dioxide product is observed, which is attributed to Fe3+ catalysis of the decomposition of NO2. The active site of the catalysis is shown to be Fe(OH)3 in the polymer matrix, which is, unexpectedly, reduced to Fe(OH)2. Thermodynamic calculations show that the reduction of Fe3+ is exergonic at sufficiently high temperatures. A reaction sequence, including a catalytic cycle for decomposition of NO2, is proposed that accounts for the observed reaction products. The role of the polymer matrix is proposed to inhibit transport of gas-phase products, which allows them to interact with Fe(OH)3 doped in the polymer

    Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    Get PDF
    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations

    In situ characterization of cofacial Co(IV) centers in Co_4O_4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts

    Get PDF
    The Co_4O_4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)_2 state may be captured in a Co(III)_2(IV)_2 cubane. We demonstrate that the Co(III)_2(IV)_2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)_2(IV)_2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)_2 dimer. The exchange coupling in the cofacial Co(IV)_2 site allows for parallels to be drawn between the electronic structure of the Co_4O_4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)_2 center on O-O bond formation

    Exploration into Expanding the Burlington SASH (Seniors Aging Safely at Home) Program

    Get PDF
    Background: In 2009, the Cathedral Square Corporation partnered with community provider organizations* to design a model for in-home services and support known as Seniors Aging Safely at Home (SASH). This comprehensive program, implemented at Heineberg Senior Housing in the New North End of Burlington, VT., combines health support, education, and social activities to create a safe and fulfilling environment for participants. Cathedral Squareplans to extend their SASH program to New North End (NNE) seniors residing in their own homes. However, the current and future needs of the NNE senior population (defined here as individuals age 50 and older) are not well known. NORCs are communities in which the population has aged in place, resulting in a high proportion of seniors living in one area. Neighborhoods with this dynamic have begun to organize programs which provide a variety of services to their seniors, including yard-work, educational workshops, social opportunities, and access to health care services. Village models are similar, but tend to be designed more intentionally as senior-supporting neighborhoods rather than arising naturally as the local population ages. By looking into current community models and by investigating the needs of the NNE senior population, Cathedral Square will be further equipped to offer important services to those who are interested.https://scholarworks.uvm.edu/comphp_gallery/1050/thumbnail.jp

    The Nature of the Long-Lived Excited State in a Ni^(II) Phthalocyanine Complex Investigated by X-Ray Transient Absorption Spectroscopy

    Get PDF
    The nature of the photoexcited state of octabutoxy nickel(II) phthalocyanine (NiPcOBu₈) with a 500 ps lifetime was investigated by X‐ray transient absorption (XTA) spectroscopy. Previous optical, vibrational, and computational studies have suggested that this photoexcited state has a ligand‐to‐metal charge transfer (LMCT) nature. By using XTA, which provides unambiguous information on the local electronic and nuclear configuration around the Ni center, the nature of the excited state of NiPcOBu₈ was reassessed. Using X‐ray probe pulses from a synchrotron source, the ground‐ and excited‐state X‐ray absorption spectra of NiPcOBu8 were measured. Based on the results, we identified that the excited state exhibits spectral features that are characteristic of a Ni^(1, 3)(3d_(z²), 3d_(x²-y²)) state rather than a LMCT state with a transiently reduced Ni center. This state resembles the (d,d) state of nickel(II) tetramesitylphorphyrin. The XTA features are rationalized based on the inherent cavity sizes of the macrocycles. These results may provide useful guidance for the design of photocatalysts in the future

    Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction

    Get PDF
    Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field ⁵⁷Fe Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly identify Fe⁴⁺ in mixed-metal Co-Fe oxides. The highest Fe⁴⁺ population is obtained in the 40–60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeOx films in 1 M KOH, tracks the absolute concentration of Fe⁴⁺. The results reported herein suggest an important role for the formation of the Fe⁴⁺ redox state in activating cobaltate OER catalysts at high iron loadings

    Synthesis, structure, and excited state kinetics of heteroleptic Cu(I) complexes with a new sterically demanding phenanthroline ligand

    Get PDF
    In this report we describe the synthesis of a new phenanthroline ligand, 2,9-di(2,4,6-tri-isopropyl-phenyl)-1,10-phenanthroline (bL2) and its use as the blocking ligand in the preparation of two new heteroleptic Cu(i)diimine complexes. Analysis of the CuHETPHEN single crystal structures shows a distinct distortion from an ideal tetrahedral geometry around the Cu(i) center, forced by the secondary phenanthroline ligand rotating to accommodate the isopropyl groups of bL2. The increased steric bulk of bL2 as compared to the more commonly used 2,9-dimesityl-1,10-phenanthroline blocking ligand prohibits intramolecular ligand-ligand interaction, which is unique among CuHETPHEN complexes. The ground state optical and redox properties of CuHETPHEN complexes are responsive to the substitution on the blocking ligand even though the differences in structure are far removed from the Cu(i) center. Transient optical spectroscopy was used to understand the excited state kinetics in both coordinating and non-coordinating solvents following visible excitation. Substitution of the blocking phenanthroline ligand has a significant impact on the ^3MLCT decay and can be used to increase the excited state lifetime by 50%. Electronic structure calculations established relationships between ground and excited state properties, and general entatic state concepts are discussed for copper photosensitizers. This work contributes to the growing library of CuHETPHEN complexes and broadens the fundamental understanding of their ground and excited state properties

    A Ten-Fold Solvent Kinetic Isotope Effect for the Nonradiative Relaxation of the Aqueous Ferrate(VI) Ion

    Get PDF
    Hypervalent iron intermediates have been invoked in the catalytic cycles of many metalloproteins, and thus it is crucial to understand how the coupling between such species and their environment can impact their chemical and physical properties in such contexts. In this 2 work, we take advantage of the solvent kinetic isotope effect (SKIE) to gain insight into the nonradiative deactivation of electronic excited states of the aqueous ferrate(VI) ion. We observe an exceptionally large SKIE of 9.7 for the nanosecond-scale relaxation of the lowest energy triplet ligand field state to the ground state. Proton inventory studies demonstrate that a single solvent O-H bond is coupled to the ion during deactivation, likely due to the sparse vibrational structure of ferrate(VI). Such a mechanism is consistent with that reported for the deactivation of f-f excited states of aqueous trivalent lanthanides, which exhibit comparably large SKIE values. This phenomenon is ascribed entirely to dissipation of energy into a higher overtone of a solvent acceptor mode, as any impact on the apparent relaxation rate due to a change in solvent viscosity is negligible

    Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    Get PDF
    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations
    corecore