20 research outputs found

    Tau pathology as determinant of changes in atrophy and cerebral blood flow: a multi-modal longitudinal imaging study

    Get PDF
    PURPOSE: Tau pathology is associated with concurrent atrophy and decreased cerebral blood flow (CBF) in Alzheimer's disease (AD), but less is known about their temporal relationships. Our aim was therefore to investigate the association of concurrent and longitudinal tau PET with longitudinal changes in atrophy and relative CBF. METHODS: We included 61 individuals from the Amsterdam Dementia Cohort (mean age 65.1 ± 7.5 years, 44% female, 57% amyloid-β positive [Aβ +], 26 cognitively impaired [CI]) who underwent dynamic [18F]flortaucipir PET and structural MRI at baseline and 25 ± 5 months follow-up. In addition, we included 86 individuals (68 CI) who only underwent baseline dynamic [18F]flortaucipir PET and MRI scans to increase power in our statistical models. We obtained [18F]flortaucipir PET binding potential (BPND) and R1 values reflecting tau load and relative CBF, respectively, and computed cortical thickness from the structural MRI scans using FreeSurfer. We assessed the regional associations between i) baseline and ii) annual change in tau PET BPND in Braak I, III/IV, and V/VI regions and cortical thickness or R1 in cortical gray matter regions (spanning the whole brain) over time using linear mixed models with random intercepts adjusted for age, sex, time between baseline and follow-up assessments, and baseline BPND in case of analyses with annual change as determinant. All analyses were performed in Aβ-  cognitively normal (CN) individuals and Aβ+  (CN and CI) individuals separately. RESULTS: In Aβ+ individuals, greater baseline Braak III/IV and V/VI tau PET binding was associated with faster cortical thinning in primarily frontotemporal regions. Annual changes in tau PET were not associated with cortical thinning over time in either Aβ+ or Aβ-  individuals. Baseline tau PET was not associated with longitudinal changes in relative CBF, but increases in Braak III/IV tau PET over time were associated with increases in parietal relative CBF over time in Aβ + individuals. CONCLUSION: We showed that higher tau load was related to accelerated cortical thinning, but not to decreases in relative CBF. Moreover, tau PET load at baseline was a stronger predictor of cortical thinning than change of tau PET signal

    Kinetics and 28-day test-retest repeatability and reproducibility of [C-11]UCB-J PET brain imaging

    Get PDF
    [C-11]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test-retest repeatability (TRT) of quantitative [C-11]UCB-J brain positron emission tomography (PET) imaging in Alzheimer's disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [C-11]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K-1) and volume of distribution (V-T) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_V-B and 2T4k_V-B described the [C-11]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for V-T, DVR and SRTM BPND were -2.2% +/- 8.5, 0.4% +/- 12.0 and -8.0% +/- 10.2, averaged over all subjects. [C-11]UCB-J kinetics can be well described by a 1T2k_V-B model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for V-T, DVR and BPND wa

    Validation and test-retest repeatability performance of parametric methods for [11C]UCB-J PET

    Get PDF
    [(11)C]UCB-J is a PET radioligand that binds to the presynaptic vesicle glycoprotein 2A. Therefore, [(11)C]UCB-J PET may serve as an in vivo marker of synaptic integrity. The main objective of this study was to evaluate the quantitative accuracy and the 28-day test–retest repeatability (TRT) of various parametric quantitative methods for dynamic [(11)C]UCB-J studies in Alzheimer’s disease (AD) patients and healthy controls (HC). Eight HCs and seven AD patients underwent two 60-min dynamic [(11)C]UCB-J PET scans with arterial sampling over a 28-day interval. Several plasma-input based and reference-region based parametric methods were used to generate parametric images using metabolite corrected plasma activity as input function or white matter semi-ovale as reference region. Different parametric outcomes were compared regionally with corresponding non-linear regression (NLR) estimates. Furthermore, the 28-day TRT was assessed for all parametric methods. Spectral analysis (SA) and Logan graphical analysis showed high correlations with NLR estimates. Receptor parametric mapping (RPM) and simplified reference tissue model 2 (SRTM2) BP(ND), and reference Logan (RLogan) distribution volume ratio (DVR) regional estimates correlated well with plasma-input derived DVR and SRTM BP(ND). Among the multilinear reference tissue model (MRTM) methods, MRTM1 had the best correspondence with DVR and SRTM BP(ND). Among the parametric methods evaluated, spectral analysis (SA) and SRTM2 were the best plasma-input and reference tissue methods, respectively, to obtain quantitatively accurate and repeatable parametric images for dynamic [(11)C]UCB-J PET. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-021-00874-8

    Test–retest repeatability of [18F]Flortaucipir PET in Alzheimer’s disease and cognitively normal individuals

    No full text
    The aim of this study was to investigate the test–retest (TRT) repeatability of various parametric quantification methods for [18F]Flortaucipir positron emission tomography (PET). We included eight subjects with dementia or mild cognitive impairment due to Alzheimer’s disease and six cognitively normal subjects. All underwent two 130-min dynamic [18F]Flortaucipir PET scans within 3 ± 1 weeks. Data were analyzed using reference region models receptor parametric mapping (RPM), simplified reference tissue method 2 (SRTM2) and reference logan (RLogan), as well as standardized uptake value ratios (SUVr, time intervals 40–60, 80–100 and 110–130 min post-injection) with cerebellar gray matter as reference region. We obtained distribution volume ratio or SUVr, first for all brain regions and then in three tau-specific regions-of-interest (ROIs). TRT repeatability (%) was defined as |retest–test|/(average (test + retest)) × 100. For all methods and across ROIs, TRT repeatability ranged from (median (IQR)) 0.84% (0.68–2.15) to 6.84% (2.99–11.50). TRT repeatability was good for all reference methods used, although semi-quantitative models (i.e. SUVr) performed marginally worse than quantitative models, for instance TRT repeatability of RPM: 1.98% (0.78–3.58) vs. SUVr80–100: 3.05% (1.28–5.52), p < 0.001. Furthermore, for SUVr80–100 and SUVr110–130, with higher average SUVr, more variation was observed. In conclusion, while TRT repeatability was good for all models used, quantitative methods performed slightly better than semi-quantitative methods

    Effect of Shortening the Scan Duration on Quantitative Accuracy of [18F]Flortaucipir Studies

    No full text
    Purpose: Dynamic positron emission tomography (PET) protocols allow for accurate quantification of [18F]flortaucipir-specific binding. However, dynamic acquisitions can be challenging given the long required scan duration of 130 min. The current study assessed the effect of shorter scan protocols for [18F]flortaucipir on its quantitative accuracy. Procedures: Two study cohorts with Alzheimer’s disease (AD) patients and healthy controls (HC) were included. All subjects underwent a 130-min dynamic [18F]flortaucipir PET scan consisting of two parts (0–60/80–130 min) post-injection. Arterial sampling was acquired during scanning of the first cohort only. For the second cohort, a second PET scan was acquired within 1–4 weeks of the first PET scan to assess test-retest repeatability (TRT). Three alternative time intervals were explored for the second part of the scan: 80–120, 80–110 and 80–100 min. Furthermore, the first part of the scan was also varied: 0–50, 0–40 and 0–30 min time intervals were assessed. The gap in the reference TACs was interpolated using four different interpolation methods: population-based input function 2T4k_VB (POP-IP_2T4k_VB), cubic, linear and exponential. Regional binding potential (BPND) and relative tracer delivery (R1) values estimated using simplified reference tissue model (SRTM) and/or receptor parametric mapping (RPM). The different scan protocols were compared to the respective values estimated using the original scan acquisition. In addition, TRT of the RPM BPND and R1 values estimated using the optimal shortest scan duration was also assessed. Results: RPM BPND and R1 obtained using 0–30/80–100 min scan and POP-IP_2T4k_VB reference region interpolation had an excellent correlation with the respective parametric values estimated using the original scan duration (r2 > 0.95). The TRT of RPM BPND and R1 using the shortest scan duration was − 1 ± 5 % and − 1 ± 6 % respectively. Conclusions: This study demonstrated that [18F]flortaucipir PET scan can be acquired with sufficient quantitative accuracy using only 50 min of dual-time-window scanning time

    Longitudinal Tau PET Using 18F-Flortaucipir: The Effect of Relative Cerebral Blood Flow on Quantitative and Semiquantitative Parameters

    No full text
    Semiquantitative PET measures such as SUV ratio (SUVr) have several advantages over quantitative measures, such as practical applicability and relative computational simplicity. However, SUVr may potentially be affected by changes in blood flow, whereas quantitative measures such as nondisplaceable binding potential (BPND) are not. For 18F-flortaucipir PET, the sensitivity of SUVr for changes in blood flow is currently unknown. Therefore, we compared semiquantitative (SUVr) and quantitative (BPND) parameters of longitudinal 18F-flortaucipir PET scans and assessed their vulnerability to changes in blood flow. Methods: Subjects with subjective cognitive decline (n = 38) and Alzheimer disease patients (n = 24) underwent baseline and 2-y follow-up dynamic 18F-flortaucipir PET scans. BPND and relative tracer delivery were estimated using receptor parametric mapping, and SUVr at 80-100 min was calculated. Regional SUVrs were compared with corresponding distribution volume ratio (BPND + 1) using paired t tests. Additionally, simulations were performed to model effects of larger flow changes in different binding categories. Results: Results in subjective cognitive decline and Alzheimer disease showed only minor differences between SUVr and BPND changes over time. Relative tracer delivery changes were small in all groups. Simulations illustrated a variable bias for SUVr depending on the amount of binding. Conclusion: SUVr provided an accurate estimate of changes in specific binding for 18F-flortaucipir over a 2-y follow-up during which changes in flow were small. Notwithstanding, simulations showed that large(r) flow changes may affect 18F-flortaucipir SUVr. Given that it is currently unknown to what order of magnitude pharmacotherapeutic interventions may induce changes in cerebral blood flow, caution may be warranted when changes in flow are potentially large(r), as in clinical trials

    Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer’s disease

    No full text
    Purpose: We aimed to investigate associations between tau pathology and relative cerebral blood flow (rCBF), and their relationship with cognition in Alzheimer’s disease (AD), by using a single dynamic [18F]flortaucipir positron emission tomography (PET) scan. Methods: Seventy-one subjects with AD (66 ± 8 years, mini-mental state examination (MMSE) 23 ± 4) underwent a dynamic 130-min [18F]flortaucipir PET scan. Cognitive assessment consisted of composite scores of four cognitive domains. For tau pathology and rCBF, receptor parametric mapping (cerebellar gray matter reference region) was used to create uncorrected and partial volume-corrected parametric images of non-displaceable binding potential (BPND) and R1, respectively. (Voxel-wise) linear regressions were used to investigate associations between BPND and/or R1 and cognition. Results: Higher [18F]flortaucipir BPND was associated with lower R1 in the lateral temporal, parietal and occipital regions. Higher medial temporal BPND was associated with worse memory, and higher lateral temporal BPND with worse executive functioning and language. Higher parietal BPND was associated with worse executive functioning, language and attention, and higher occipital BPND with lower cognitive scores across all domains. Higher frontal BPND was associated with worse executive function and attention. For [18F]flortaucipir R1, lower values in the lateral temporal and parietal ROIs were associated with worse executive functioning, language and attention, and lower occipital R1 with lower language and attention scores. When [18F]flortaucipir BPND and R1 were modelled simultaneously, associations between lower R1 in the lateral temporal ROI and worse attention remained, as well as for lower parietal R1 and worse executive functioning and attention. Conclusion: Tau pathology was associated with locally reduced rCBF. Tau pathology and low rCBF were both independently associated with worse cognitive performance. For tau pathology, these associations spanned widespread neocortex, while for rCBF, independent associations were restricted to lateral temporal and parietal regions and the executive functioning and attention domains. These findings indicate that each biomarker may independently contribute to cognitive impairment in AD

    Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer’s disease

    No full text
    Purpose: Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods: Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results: Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤ − 0.48 vs LOAD − 0.18 ≤ stβ ≤ − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions: Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD

    Hippocampal [18F]flortaucipir BPND corrected for possible spill-in of the choroid plexus retains strong clinico-pathological relationships

    No full text
    Background: Off-target [ 18F]flortaucipir (tau) PET binding in the choroid plexus causes spill-in into the nearby hippocampus, which may influence the correlation between [ 18F]flortaucipir binding and measures of cognition. Previously, we showed that partial volume correction (combination of Van Cittert iterative deconvolution and HYPR denoising; PVC HDH) and manually eroding the hippocampus resulted in a significant decrease of the choroid plexus spill-in. In this study, we compared three different approaches for the quantification of hippocampal [ 18F]flortaucipir signal using a semi-automated technique, and assessed correlations with cognitive performance across methods. Methods: Dynamic 130 min [ 18F]flortaucipir PET scans were performed in 109 subjects (45 cognitively normal subjects (CN) and 64 mild cognitive impairment/Alzheimer's disease (AD) dementia patients. We extracted hippocampal binding potential (BP ND) using receptor parametric mapping with cerebellar grey matter as reference region. PVC HDH was performed. Based on our previous study in which we manually eroded 40% ± 10% of voxels of the hippocampus, three hippocampal volumes-of-interest (VOIs) were generated: a non-optimized 100% hippocampal VOI [100%], and combining HDH with eroding a percentage of the highest hippocampus BP ND voxels (i.e. lowering spill-in) resulting in optimized 50%[50%HDH] and 40%[40%HDH] hippocampal VOIs. Cognitive performance was assessed with the Mini-Mental State Examination (MMSE) and Rey auditory verbal learning delayed recall. We performed receiver operating characteristic analyses to investigate which method could best discriminate MCI/AD from controls. Subsequently, we performed linear regressions to investigate associations between the hippocampal [ 18F]flortaucipir BP ND VOIs and MMSE/delayed recall adjusted for age, sex and education. Results: We found higher hippocampal [ 18F]flortaucipir BP ND in MCI/AD patients (BP ND100%=0.27±0.15) compared to CN (BP ND100%= 0.07±0.13) and all methods showed comparable discriminative effects (AUC 100%=0.85[CI=0.78–0.93]; AUC 50%HDH=0.84[CI=0.74–0.92]; AUC 40%HDH=0.83[CI=0.74–0.92]). Across groups, higher [ 18F]flortaucipir BP ND was related to lower scores on MMSE (standardized β 100%=-0.38[CI=-0.57−0.20]; β 50%HDH= -0.37[CI=-0.54−0.19]; β 40%HDH=-0.35[CI=-0.53−0.17], all p<0.001) and delayed recall (standardized β 100%=-0.64[CI=-0.79−0.49]; β 50%HDH= -0.61[CI=-0.76−0.46]; β 40%HDH=-0.59[CI=-0.75−0.44]; all p<0.001), with comparable effect sizes for all hippocampal VOIs. Conclusions: Hippocampal tau load measured with [ 18F]flortaucipir PET is strongly associated with cognitive function. Both discrimination between diagnostic groups and associations between hippocampal [ 18F]flortaucipir BP ND and memory were comparable for all methods. The non-optimized 100% hippocampal VOI may be sufficient for clinical interpretation. However, proper correction for choroid plexus spillover and may be required in case of smaller effect sizes between subject groups or for longitudinal studies
    corecore