2 research outputs found

    Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization

    No full text
    Background and Objectives: Recently, many studies have focused on the early diagnosis of coronary artery disease (CAD), which is one of the leading causes of cardiac-associated death worldwide. The effectiveness of the most important features influencing disease diagnosis determines the performance of machine learning systems that can allow for timely and accurate treatment. We performed a Hybrid ML framework based on hard ensemble voting optimization (HEVO) to classify patients with CAD using the Z-Alizadeh Sani dataset. All categorical features were converted to numerical forms, the synthetic minority oversampling technique (SMOTE) was employed to overcome imbalanced distribution between two classes in the dataset, and then, recursive feature elimination (RFE) with random forest (RF) was used to obtain the best subset of features. Materials and Methods: After solving the biased distribution in the CAD data set using the SMOTE method and finding the high correlation features that affected the classification of CAD patients. The performance of the proposed model was evaluated using grid search optimization, and the best hyperparameters were identified for developing four applications, namely, RF, AdaBoost, gradient-boosting, and extra trees based on an HEV classifier. Results: Five fold cross-validation experiments with the HEV classifier showed excellent prediction performance results with the 10 best balanced features obtained using SMOTE and feature selection. All evaluation metrics results reached > 98% with the HEV classifier, and the gradient-boosting model was the second best classification model with accuracy = 97% and F1-score = 98%. Conclusions: When compared to modern methods, the proposed method perform well in diagnosing coronary artery disease, and therefore, the proposed method can be used by medical personnel for supplementary therapy for timely, accurate, and efficient identification of CAD cases in suspected patients

    Multi-objective deep learning framework for COVID-19 dataset problems

    No full text
    Background: It has been reported that a deadly virus known as COVID-19 has arisen in China and has spread rapidly throughout the country. The globe was shattered, and a large number of people on the planet died. It quickly became an epidemic due to the absence of apparent symptoms and causes for patients, confusion appears due to the lack of sufficient laboratory results, and its intelligent algorithms were used to make decisions on clinical outcomes. Methods: This study developed a new framework for medical datasets with high missing values based on deep-learning optimization models. The robustness of our model is achieved by combining: Data Missing Care (DMC) Framework to overcome the problem of high missing data in medical datasets, and Grid-Search optimization used to develop an improved deep predictive training model for patients with COVID-19 by setting multiple hyperparameters and tuning assessments on three deep learning algorithms: ANN (Artificial Neural Network), CNN (Convolutional Neural Network), and Recurrent Neural Networks (RNN). Results: The experiment results conducted on three medical datasets showed the effectiveness of our hybrid approach and an improvement in accuracy and efficiency since all the evaluation metrics were close to ideal for all deep learning classifiers. We got the best evaluation in terms of accuracy 98%, precession 98.5%, F1-score 98.6%, and ROC Curve (95% to 99%) for the COVID-19 dataset provided by GitHub. The second dataset is also Covid-19 provided by Albert Einstein Hospital with high missing data after applying our approach the accuracy reached more than 91%. Third dataset for Cervical Cancer provided by Kaggle all the evaluation metrics reached more than 95%. Conclusions: The proposed formula for processing this type of data can replace the traditional formats in optimization while providing high accuracy and less time to classify patients. Whereas, the experimental results of our approach, supported by comprehensive statistical analysis, can improve the overall evaluation performance of the problem of classifying medical data sets with high missing values. Therefore, this approach can be used in many areas such as energy management, environment, and medicine
    corecore