5,490 research outputs found
Cognitive Control Signals in Posterior Cingulate Cortex
Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain
Stripe phases in high-temperature superconductors
Stripe phases are predicted and observed to occur in a class of
strongly-correlated materials describable as doped antiferromagnets, of which
the copper-oxide superconductors are the most prominent representative. The
existence of stripe correlations necessitates the development of new principles
for describing charge transport, and especially superconductivity, in these
materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl.
Acad. Sci. US
Study protocol: The Adherence and Intensification of Medications (AIM) study - a cluster randomized controlled effectiveness study
Abstract Background Many patients with diabetes have poor blood pressure (BP) control. Pharmacological therapy is the cornerstone of effective BP treatment, yet there are high rates both of poor medication adherence and failure to intensify medications. Successful medication management requires an effective partnership between providers who initiate and increase doses of effective medications and patients who adhere to the regimen. Methods In this cluster-randomized controlled effectiveness study, primary care teams within sites were randomized to a program led by a clinical pharmacist trained in motivational interviewing-based behavioral counseling approaches and authorized to make BP medication changes or to usual care. This study involved the collection of data during a 14-month intervention period in three Department of Veterans Affairs facilities and two Kaiser Permanente Northern California facilities. The clinical pharmacist was supported by clinical information systems that enabled proactive identification of, and outreach to, eligible patients identified on the basis of poor BP control and either medication refill gaps or lack of recent medication intensification. The primary outcome is the relative change in systolic blood pressure (SBP) measurements over time. Secondary outcomes are changes in Hemoglobin A1c, low-density lipoprotein cholesterol (LDL), medication adherence determined from pharmacy refill data, and medication intensification rates. Discussion Integration of the three intervention elements - proactive identification, adherence counseling and medication intensification - is essential to achieve optimal levels of control for high-risk patients. Testing the effectiveness of this intervention at the team level allows us to study the program as it would typically be implemented within a clinic setting, including how it integrates with other elements of care. Trial Registration The ClinicalTrials.gov registration number is NCT00495794.http://deepblue.lib.umich.edu/bitstream/2027.42/78258/1/1745-6215-11-95.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78258/2/1745-6215-11-95.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78258/3/1745-6215-11-95-S1.DOCPeer Reviewe
Geometric Quantum Computation
We describe in detail a general strategy for implementing a conditional
geometric phase between two spins. Combined with single-spin operations, this
simple operation is a universal gate for quantum computation, in that any
unitary transformation can be implemented with arbitrary precision using only
single-spin operations and conditional phase shifts. Thus quantum geometrical
phases can form the basis of any quantum computation. Moreover, as the induced
conditional phase depends only on the geometry of the paths executed by the
spins it is resilient to certain types of errors and offers the potential of a
naturally fault-tolerant way of performing quantum computation.Comment: 15 pages, LaTeX, uses cite, eepic, epsfig, graphicx and amsfonts.
Accepted by J. Mod. Op
Time reparametrization group and the long time behaviour in quantum glassy systems
We study the long time dynamics of a quantum version of the
Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical
equations have a parallel with renormalization group transformations, and
within this language the long time behaviour of this model is controlled by a
reparametrization group (RG) fixed point of the classical dynamics. The
irrelevance of the quantum terms in the dynamical equations in the aging regime
explains the classical nature of the violation of the fluctuation-dissipation
theorem.Comment: 4 page
The nature of the charge density waves in under-doped YBaCuO revealed by X-ray measurements of the ionic displacements
All underdoped high-temperature cuprate superconductors appear to exhibit
charge density wave (CDW) order, but both the underlying symmetry breaking and
the origin of the CDW remain unclear. We use X-ray diffraction to determine the
microscopic structure of the CDW in an archetypical cuprate
YBaCuO at its superconducting transition temperature Tc ~ 60
K. We find that the CDWs present in this material break the mirror symmetry of
the CuO2 bilayers. The ionic displacements in a CDW have two components: one
perpendicular to the CuO planes, and another parallel to these planes,
which is out of phase with the first. The largest displacements are those of
the planar oxygen atoms and are perpendicular to the CuO planes. Our
results allow many electronic properties of the underdoped cuprates to be
understood. For instance, the CDW will lead to local variations in the doping
(or electronic structure) giving an explicit explanation of the appearance of
density-wave states with broken symmetry in scanning tunnelling microscopy
(STM) and soft X-ray measurements
Assessment of Synaptic Function During Short-Term Facilitation in Motor Nerve Terminals in the Crayfish
An enhanced buildup of [Ca2+]i occurs during short-term facilitation (STF) at the crayfish neuromuscular junction (NMJ). As a model system, this NMJ allows discrete postsynaptic quantal events to be counted and characterized in relation to STF. Providing 10 pulses, at 20 and 40Hz, we monitored postsynaptic quantal events over a discrete region of a nerve terminal with a focal macropatch electrode. Characteristics of quantal events were clustered into groups by peak amplitude and time to the peak amplitude. Since the synapses at this NMJ have varied spacing of active zones, number of active zones and synaptic size, the graded nature of synaptic recruitment is likely one means of titrating synaptic efficacy for the graded depolarization on the non-spiking muscle fiber. Synapses in this preparation would appear to have a quantal signature that can be used for quantifying their activity which is useful in estimating the overall number of active sites. We use mixture modeling to estimate n (number of active sites) and p (probability of vesicle fusion) from the quantal characteristics. In a preparation that was stimulated at 40Hz, synapses were recruited (increase in n) and the number active synapses increased in p. In a different preparation, p increased as the stimulation was changed from 20 to 40Hz, but n did not show a substantial increase; however, during the STF train, p increases slightly. This study provides a novel approach in determining subsets of the single evoked quanta to better estimate n and p which describe synaptic function
Range of the t--J model parameters for CuO plane: experimental data constraints
The t-J model effective hopping integral is determined from the three-band
Hubbard model for the charge carriers in CuO plane. For this purpose the
values of the superexchange constant and the charge-transfer gap
are calculated in the framework of the three-band model. Fitting values of
and to the experimental data allows to narrow the uncertainty region
of the three-band model parameters. As a result, the ratio of the t-J
model is fixed in the range for holes and for
electrons. Formation of the Frenkel exciton is justified and the main features
of the charge-transfer spectrum are correctly described in the framework of
this approach.Comment: 20pp., REVTEX 3.0, (11 figures), report 66
Total Angular Momentum Conservation During Tunnelling through Semiconductor Barriers
We have investigated the electrical transport through strained
p-Si/Si_{1-x}Ge_x double-barrier resonant tunnelling diodes. The confinement
shift for diodes with different well width, the shift due to a central
potential spike in a well, and magnetotunnelling spectroscopy demonstrate that
the first two resonances are due to tunnelling through heavy hole levels,
whereas there is no sign of tunnelling through the first light hole state. This
demonstrates for the first time the conservation of the total angular momentum
in valence band resonant tunnelling. It is also shown that conduction through
light hole states is possible in many structures due to tunnelling of carriers
from bulk emitter states.Comment: 4 pages, 4 figure
Membrane paradigm realized?
Are there any degrees of freedom on the black hole horizon? Using the
`membrane paradigm' we can reproduce coarse-grained physics outside the hole by
assuming a fictitious membrane just outside the horizon. But to solve the
information puzzle we need `real' degrees of freedom at the horizon, which can
modify Hawking's evolution of quantum modes. We argue that recent results on
gravitational microstates imply a set of real degrees of freedom just outside
the horizon; the state of the hole is a linear combination of rapidly
oscillating gravitational solutions with support concentrated just outside the
horizon radius. The collective behavior of these microstate solutions may give
a realization of the membrane paradigm, with the fictitious membrane now
replaced by real, explicit degrees of freedom.Comment: 8 pages, Latex, 3 figures (Essay given second place in Gravity
Research Foundation essay competition 2010
- …