346 research outputs found
Resolved-sideband Raman cooling to the ground state of an optical lattice
We trap neutral Cs atoms in a two-dimensional optical lattice and cool them
close to the zero-point of motion by resolved-sideband Raman cooling. Sideband
cooling occurs via transitions between the vibrational manifolds associated
with a pair of magnetic sublevels and the required Raman coupling is provided
by the lattice potential itself. We obtain mean vibrational excitations
\bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim
98% in the vibrational ground state. Atoms in the ground state of an optical
lattice provide a new system in which to explore quantum state control and
subrecoil laser coolingComment: PDF file, 13 pages including 3 figure
Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice
The qualitative nature (i.e. integrable vs. chaotic) of the translational
dynamics of a three-level atom in an optical lattice is shown to be
controllable by varying the relative laser phase of two standing wave lasers.
Control is explained in terms of the nonadiabatic transition between optical
potentials and the corresponding regular to chaotic transition in mixed
classical-quantum dynamics. The results are of interest to both areas of
coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter
Sub-Poissonian statistics in order-to-chaos transition
We study the phenomena at the overlap of quantum chaos and nonclassical
statistics for the time-dependent model of nonlinear oscillator. It is shown in
the framework of Mandel Q-parameter and Wigner function that the statistics of
oscillatory excitation number is drastically changed in order-to chaos
transition. The essential improvement of sub-Poissonian statistics in
comparison with an analogous one for the standard model of driven anharmonic
oscillator is observed for the regular operational regime. It is shown that in
the chaotic regime the system exhibits the range of sub- and super-Poissonian
statistics which alternate one to other depending on time intervals. Unusual
dependence of the variance of oscillatory number on the external noise level
for the chaotic dynamics is observed.Comment: 9 pages, RevTeX, 14 figure
Quantum-state control in optical lattices
We study the means to prepare and coherently manipulate atomic wave packets
in optical lattices, with particular emphasis on alkali atoms in the
far-detuned limit. We derive a general, basis independent expression for the
lattice operator, and show that its off-diagonal elements can be tailored to
couple the vibrational manifolds of separate magnetic sublevels. Using these
couplings one can evolve the state of a trapped atom in a quantum coherent
fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We
explore the use of atoms bound in optical lattices to study quantum tunneling
and the generation of macroscopic superposition states in a double-well
potential. Far-off-resonance optical potentials lend themselves particularly
well to reservoir engineering via well controlled fluctuations in the
potential, making the atom/lattice system attractive for the study of
decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199
State determination in continuous measurement
The possibility of determining the state of a quantum system after a
continuous measurement of position is discussed in the framework of quantum
trajectory theory. Initial lack of knowledge of the system and external noises
are accounted for by considering the evolution of conditioned density matrices
under a stochastic master equation. It is shown that after a finite time the
state of the system is a pure state and can be inferred from the measurement
record alone. The relation to emerging possibilities for the continuous
experimental observation of single quanta, as for example in cavity quantum
electrodynamics, is discussed.Comment: 12 pages, 4 figures, Revte
Recommended from our members
The polygenic nature of telomere length and the anti-ageing properties of lithium
Telomere length is a promising biomarker for age-related disease and a potential anti-ageing drug target. Here, we study the genetic architecture of telomere length and the repositioning potential of lithium as an anti-ageing medication. LD score regression applied to the largest telomere length genome-wide association study to-date, revealed SNP-chip heritability estimates of 7.29%, with polygenic risk scoring capturing 4.4% of the variance in telomere length in an independent cohort (pâ=â6.17âĂâ10-5). Gene-enrichment analysis identified 13 genes associated with telomere length, with the most significant being the leucine rich repeat gene, LRRC34 (pâ=â3.69âĂâ10-18). In the context of lithium, we confirm that chronic use in a sample of 384 bipolar disorder patients is associated with longer telomeres (pâ=â0.03). As complementary evidence, we studied three orthologs of telomere length regulators in a Caenorhabditis elegans model of lithium-induced extended longevity and found all transcripts to be affected post-treatment (pââ0.05). Consequently, this suggests that lithium may be catalysing the activity of endogenous mechanisms that promote telomere lengthening, whereby its efficacy eventually becomes limited by each individual's inherent telomere maintenance capabilities. Our work indicates a potential use of polygenic risk scoring for the prediction of adult telomere length and consequently lithium's anti-ageing efficacy
Linking the subcultures of physics: Virtual empiricism and the bonding role of trust
This article draws on empirical material concerning the communication and use of knowledge in experimental physics and their relations to the culture of theoretical physics. The role that trust plays in these interactions is used to create a model of social distance between interacting theoretical and experimental cultures. This article thus seeks to reintroduce trust as a fundamental element in answering the problem of disunity in the sociology of knowledge
State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing
TNF-α increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes
Inflammatory mediators have been reported to promote malignant cell growth, invasion and metastatic potential. More specifically,
we have recently reported that tumour necrosis factor alpha (TNF-a) increases melanoma cell attachment to extracellular matrix
(ECM) substrates and invasion through fibronectin. In this study, we extend these investigations asking specifically whether the TNF-a
effect on cell invasion and migration involves activation of proteolytic enzymes. We examined the effect of TNF-a on melanoma
expression/activation of type IV gelatinases matrix metalloproteinases 2 and 9 (MMPs -2 and -9) and general proteolytic enzymes.
Stimulation with TNF-a significantly increased both melanoma cell migration at 24 h ( ĂŸ 21%) and invasion through fibronectin
( ĂŸ 35%) but did not upregulate/activate the expression of latent MMP-2 constitutively produced by these cells and did not
upregulate their general protease activity. However, the increased cell migration and invasion through fibronectin observed following
stimulation with TNF-a were inhibited by the general protease inhibitor a2 macroglobulin. These findings suggest that the
promigratory and proinvasive effect of TNF-a on this melanoma cell line may be mediated to some extent by induction of localised
cell membrane-bound degradative enzyme activity, which is not readily detected in biochemical assays
- âŠ