58 research outputs found

    Selective Scene Text Removal

    Full text link
    Scene text removal (STR) is the image transformation task to remove text regions in scene images. The conventional STR methods remove all scene text. This means that the existing methods cannot select text to be removed. In this paper, we propose a novel task setting named selective scene text removal (SSTR) that removes only target words specified by the user. Although SSTR is a more complex task than STR, the proposed multi-module structure enables efficient training for SSTR. Experimental results show that the proposed method can remove target words as expected.Comment: 12 pages, 8 figures, Accepted at the 34th British Machine Vision Conferenc

    Cytokeratin 13, Cytokeratin 17, and Ki-67 Expression in Human Acquired Cholesteatoma and Their Correlation With Its Destructive Capacity

    Get PDF
    Objectives Cholesteatoma is a nonneoplastic destructive lesion of the temporal bone with debated pathogenesis and bone resorptive mechanism. Both molecular and cellular events chiefly master its activity. Continued research is necessary to clarify factors related to its aggressiveness. We aimed to investigate the expression of Ki-67, cytokeratin 13 (CK13) and cytokeratin 17 (CK17) in acquired nonrecurrent human cholesteatoma and correlate them with its bone destructive capacity. Methods A prospective quantitative immunohistochemical study was carried out using fresh acquired cholesteatoma tissues (n=19), collected during cholesteatoma surgery. Deep meatal skin tissues from the same patients were used as control (n=8). Cholesteatoma patients were divided into 2 groups and compared (invasive and noninvasive) according to a grading score for bone resorption based upon clinical, radiologic and intraoperative findings. To our knowledge, the role of CK17 in cholesteatoma aggressiveness was first investigated in this paper. Results Both Ki-67 and CK17 were significantly overexpressed in cholesteatoma than control tissues (P<0.001 for both Ki-67 and CK17). In addition, Ki-67 and CK17 were significantly higher in the invasive group than noninvasive group of cholesteatoma (P=0.029, P=0.033, respectively). Furthermore, Ki-67 and CK17 showed a moderate positive correlation with bone erosion scores (r=0.547, P=0.015 and r=0.588, P=0.008, respectively). In terms of CK13, no significant difference was found between cholesteatoma and skin (P=0.766). Conclusion Both Ki-67 and CK17 were overexpressed in cholesteatoma tissue and positively correlated with bone resorption activity. The concept that Ki-67 can be a predictor for aggressiveness of cholesteatoma was supported. In addition, this is the first study demonstrating CK17 as a favoring marker in the aggressiveness of acquired cholesteatoma

    Pharmacokinetic and Pharmacodynamic Properties of Lafutidine after Postprandial Oral Administration in Healthy Subjects: Comparison with Famotidine

    Get PDF
    Lafutidine, a histamine H2-receptor antagonist, inhibits gastric acid secretion during the daytime, however, the relationship between the plasma concentration and the drug response remains unclear. The aim of this study was to compare the pharmacokinetic and pharmacodynamic properties of lafutidine and famotidine following postprandial oral administration. After a lafutidine tablet (10 mg), famotidine tablet (20 mg), or water only (control) was administered, blood samples were taken and intragastric pH was measured. The plasma concentrations of lafutidine and famotidine were determined by HPLC, and the median intragastric pH values per 30 min were used as the degrees of gastric acid suppression. Data were analyzed based on a one-compartment pharmacokinetic model and a sigmoid Emax pharmacodynamic model. Lafutidine plasma concentrations rapidly increased after administration; famotidine required some time to increase the plasma concentrations, requiring an absorption lag time in the pharmacokinetic model. Between the plasma concentration and ΔpH (the difference in intragastric pH by the drug vs. control), lafutidine showed an anticlockwise hysteresis loop which indicated equilibration delay between the plasma concentration and effect site, requiring an effect site compartment in the pharmacodynamic model; famotidine showed more parallel relationship. These results indicated that the pharmacokinetic and pharmacodynamic properties of lafutidine after postprandial oral administration were different from those of famotidine at least 4.5 h after dosing

    Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice

    No full text
    Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice
    corecore