330 research outputs found

    Suzaku view of X-ray Spectral Variability of the Radio Galaxy Centaurus A : Partial Covering Absorber, Reflector, and Possible Jet Component

    Get PDF
    We observed a nearby radio galaxy, the Centaurus A (Cen A), three times with Suzaku in 2009, and measured the wide-band X-ray spectral variability more accurately than the previous measurements. The Cen A was in the active phase in 2009, and the flux became higher by a factor of 1.5--2.0 and the spectrum became harder than that in 2005. The Fe-K line intensity increased by 20--30% from 2005 to 2009. The correlation of the count rate between the XIS 3--8 keV and PIN 15--40 keV band showed a complex behavior with a deviation from a linear relation. The wide-band X-ray continuum in 2--200 keV can be fitted with an absorbed powerlaw model plus a reflection component, or a powerlaw with a partial covering Compton-thick absorption. The difference spectra between high and low flux periods in each observation were reproduced by a powerlaw with a partial covering Compton-thick absorption. Such a Compton-thick partial covering absorber was for the first time observed for the Cen A. The powerlaw photon index of the difference spectra in 2009 is almost the same as that of the time-averaged spectra in 2005, but steeper by 0.2\sim0.2 than that of the time-averaged spectra in 2009. This suggests an additional hard powerlaw component with a photon index of <1.6<1.6 in 2009. This hard component could be a lower part of the inverse-Compton-scattered component from the jet, whose gamma-ray emission has recently been detected with the Fermi/LAT.Comment: 43 pages, 16 figures, will appear in the Ap

    Interacting Vector-Spinor and Nilpotent Supersymmetry

    Full text link
    We formulate an interacting theory of a vector-spinor field that gauges anticommuting spinor charges \{Q_\alpha{}^I, Q_\beta{}^J \} = 0 in arbitrary space-time dimensions. The field content of the system is (\psi_\mu{}^{\alpha I}, \chi^{\alpha I J}, A_\mu{}^I), where \psi_\mu{}^{\alpha I} is a vector-spinor in the adjoint representation of an arbitrary gauge group, and A_\mu{}^I is its gauge field, while \chi^{\alpha I J} is an extra spinor with antisymmetric adjoint indices I J. Amazingly, the consistency of the vector-spinor field equation is maintained, despite its non-trivial interactions.Comment: 10 pages, no figure

    The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification

    Full text link
    Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M_{SS} below the string scale M_s to guarantee the absence of tachyons. We explore the possible value of M_{SS} consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x 10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14} GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f_a ~ M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide for the observed dark matter. The prize to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.Comment: 48 pages, 8 figures. v3: further minor correction

    Hibernation-like state induced by an opioid peptide protects against experimental stroke

    Get PDF
    BACKGROUND: Delta opioid peptide [D-ala2,D-leU5]enkephalin (DADLE) induces hibernation in summer ground squirrels, and enhances preservation and survival of isolated or transplanted lungs and hearts. In the present study, we investigated the protective effect of DADLE in the central nervous system. RESULTS: Adult Sprague-Dawley rats were pretreated with DADLE (4 mg/kg every 2 h x 4 injections, i.p.) or saline prior to unilateral occlusion of the middle cerebral artery (MCA). Daily behavioral tests revealed that ischemic animals treated with DADLE did not show any significant behavioral dysfunctions compared with saline-treated ischemic animals. Opioid antagonists only transiently inhibited the protective effect of DADLE, indicating the participation of non-opioid mechanisms in DADLE neuroprotection. Histological examination using triphenyltetrazolium chloride (TTC) revealed that brains from ischemic animals treated with DADLE, either alone or with adjuvant opioid blockers, exhibited almost completely intact striata. In contrast, brains from ischemic animals that received saline showed significant infarction in the lateral striatum. Analyses of apoptotic cell death revealed a significant increase in the p-53 mRNA expression in the striatum of ischemic animals that received saline, while those that received DADLE exhibited near normal striatal p-53 expression. This protective effect was accompanied by significant increments in protein levels of glial cell line-derived neurotrophic factor in the striatum of DADLE-treated ischemic animals. CONCLUSION: These results indicate that DADLE protected against necrotic and apoptotic cell death processes associated with ischemia-reperfusion injury. The present study demonstrates that delta opioids are crucially involved in stroke, suggesting that the opioid system is important in the study of brain injury and protection

    Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant

    Full text link
    We report an analysis of the interstellar γ\gamma-ray emission in the third Galactic quadrant measured by the {Fermi} Large Area Telescope. The window encompassing the Galactic plane from longitude 210\arcdeg to 250\arcdeg has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the γ\gamma-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the \HI\ column densities. No significant variations are found in the interstellar spectra in the outer Galaxy, indicating similar shapes of the cosmic-ray spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a cosmic-ray propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, XCO=N(H2)/WCOX_{\rm CO} = N({\rm H_{2}})/W_{\rm CO}, is found to be (2.08±0.11)×1020cm2(Kkms1)1(2.08 \pm 0.11) \times 10^{20} {\rm cm^{-2} (K km s^{-1})^{-1}} in the Local-arm clouds and is not significantly sensitive to the choice of \HI\ spin temperature. No significant variations are found for clouds in the interarm region.Comment: Corresponding authors: I. A. Grenier ([email protected]); T. Mizuno ([email protected]); L. Tibaldo ([email protected]) accepted for publication in Ap

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur

    Dynamic movement of the Golgi unit and its glycosylation enzyme zones

    Get PDF
    Harada A., Kunii M., Kurokawa K., et al. Dynamic movement of the Golgi unit and its glycosylation enzyme zones. Nature Communications 15, 4514 (2024); https://doi.org/10.1038/S41467-024-48901-1.Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small ‘Golgi units’ that have 1-3 μm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call ‘zones’. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis

    Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry

    Get PDF
    We study six-dimensional N=(1,0) supergravity theories with abelian, as well as non-abelian, gauge group factors. We show that for theories with fewer than nine tensor multiplets, the number of possible combinations of gauge groups - including abelian factors - and non-abelian matter representations is finite. We also identify infinite families of theories with distinct U(1) charges that cannot be ruled out using known quantum consistency conditions, though only a finite subset of these can arise from known string constructions.Comment: 49 pages, latex; v2: minor corrections, references added; v3: minor correction
    corecore