1,222 research outputs found
An approach to computing downward closures
The downward closure of a word language is the set of all (not necessarily
contiguous) subwords of its members. It is well-known that the downward closure
of any language is regular. While the downward closure appears to be a powerful
abstraction, algorithms for computing a finite automaton for the downward
closure of a given language have been established only for few language
classes.
This work presents a simple general method for computing downward closures.
For language classes that are closed under rational transductions, it is shown
that the computation of downward closures can be reduced to checking a certain
unboundedness property.
This result is used to prove that downward closures are computable for (i)
every language class with effectively semilinear Parikh images that are closed
under rational transductions, (ii) matrix languages, and (iii) indexed
languages (equivalently, languages accepted by higher-order pushdown automata
of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
Isolation of two distinct prion strains from a scrapie-affected sheep
We performed a transmission study using mice to clarify the characteristics of the most recent case of scrapie in Japan. The mice that were inoculated with the brain homogenate from a scrapie-affected sheep developed progressive neurological disease, and one of the scrapie-affected mice showed unique clinical signs during primary transmission. This mouse developed obesity, polydipsia, and polyuria. In contrast, the other affected mice exhibited weight loss and hypokinesia. In subsequent passages, the mice showed distinct characteristic scrapie phenotypes. This finding may prove that different prion strains coexist in a naturally affected sheep with scrapie
Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4
An extensive theoretical study is performed for wide bandgap crystalline
oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and
Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}:
-quartz, - and -cristobalite and stishovite, for
GeO_{2}: -quartz, and rutile, for Al_{2}O_{3}: -phase, for
Si_{3}N_{4} and Ge_{3}N_{4}: - and -phases. This work
constitutes a comprehensive account of both electronic structure and the
elastic properties of these important insulating oxides and nitrides obtained
with high accuracy based on density functional theory within the local density
approximation. Two different norm-conserving \textit{ab initio}
pseudopotentials have been tested which agree in all respects with the only
exception arising for the elastic properties of rutile GeO_{2}. The agreement
with experimental values, when available, are seen to be highly satisfactory.
The uniformity and the well convergence of this approach enables an unbiased
assessment of important physical parameters within each material and among
different insulating oxide and nitrides. The computed static electric
susceptibilities are observed to display a strong correlation with their mass
densities. There is a marked discrepancy between the considered oxides and
nitrides with the latter having sudden increase of density of states away from
the respective band edges. This is expected to give rise to excessive carrier
scattering which can practically preclude bulk impact ionization process in
Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure
A study of Smad4, Smad6 and Smad7 in Surgically Resected Samples of Pancreatic Ductal Adenocarcinoma and Their Correlation with Clinicopathological Parameters and Patient Survival
<p>Abstract</p> <p>Background</p> <p>Smad4 is the common mediator of the tumor suppressive functions of TGF-beta. Smad6 and Smad7 are the antagonists of the TGF-beta pathway. This study investigates the differential protein expressions of Smad4, Smad6 and Smad7 in tumor as compared to normal tissue of pancreatic ductal adenocarcinoma (PDAC) and compares them with clinicopathological parameters and patient survival.</p> <p>Results</p> <p>There was a significant difference in protein expressions of Smad4 (p = 0.0001), Smad6 (p = 0.0015) and Smad7 (p = 0.0005) protein in tumor as compared to paired normal samples. Loss of Smad7 expression correlated significantly with tumor size (r = 0.421, p < 0.036) and margin status (r = 0.431; p < .032). Patients with moderate to high Smad4 protein expression had a better survival (median survival = 14.600 ± 2.112 months) than patients with absent or weak Smad4 protein expression (median survival = 7.150 ± 0.662). In addition, advanced disease stage correlated significantly with poor prognosis.</p> <p>Conclusion</p> <p>Loss of Smad4 significantly correlated with poor survival of PDAC patients. In the cases where Smad4 is expressed, Smad6 inhibition is possibly a novel mechanism for Smad4 inactivation. Smad7 has a role in pathobiology of PDAC. Further investigation in the roles of Smad6 and Smad7 would help in the identification of novel therapeutic targets for PDAC.</p
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Health-related Quality of Life of Thai children with HIV infection: a comparison of the Thai Quality of Life in Children (ThQLC) with the Pediatric Quality of Life Inventory™ version 4.0 (PedsQL™ 4.0) Generic Core Scales
The purpose of this study was to evaluate the reliability and validity of the Thai Quality of Life in Children (ThQLC) and compare it with the Pediatric Quality of Life Inventory (PedsQL™ 4.0) in a sample of children receiving long-term HIV care in Thailand.
The ThQLC and the PedsQL™ 4.0 were administered to 292 children with HIV infection aged 8–16 years. Clinical parameters such as the current viral load, CD4 percent, and clinical staging were obtained by medical record review.
Three out of five ThQLC scales and three out of four PedsQL™ 4.0 scales had acceptable internal consistency reliability (i.e., Cronbach’s alpha >0.70). Cronbach’s alpha values of each scale ranged from 0.52 to 0.75 and 0.57 to 0.75 for the ThQLC and the PedsQL™ 4.0, respectively. Corresponding scales (physical functioning, emotional well-being, social functioning, and school functioning) of the ThQLC and the PedsQL™ 4.0 correlated substantially with one another (r = 0.47, 0.67, 0.59 and 0.56, respectively). Both ThQLC and PedsQL™ 4.0 overall scores significantly correlated with the child’s self-rated severity of the illness (r = −0.23 for the ThQLC and −0.28 for the PedsQL™ 4.0) and the caregiver’s rated overall quality of life (r = 0.07 for the ThQLC and 0.13 for the PedsQL™ 4.0). The overall score of the ThQLC correlated with clinical and immunologic categories of the United State-Centers for Disease Control and Prevention (US-CDC) classification system (r = −0.12), while the overall score of the PedsQL™ 4.0 significantly correlated with the number of disability days (r = −0.12) and CD4 percent (r = −0.15). However, the overall score from both instruments were not significantly different by clinical stages of HIV disease. A multitrait-multimethod analysis results demonstrated that the average convergent validity and off-diagonal correlations were 0.58 and 0.45, respectively. Discriminant validity was partially supported with 62% of validity diagonal correlations exceeding correlations between different domains (discriminant validity successes). The Hays-Hayashi MTMM quality index was 0.61. Multivariate regression analysis revealed that the ThQLC physical functioning scale provided unique information in predicting child self-rated severity of the illness and overall quality of life beyond that explained by the PedsQL™ 4.0 in Thai children with HIV infection.
We found evidence in support of the reliability and validity of the ThQLC and the PedsQL™ 4.0 for measuring the health-related quality of life of Thai children with HIV infection
Recommended from our members
The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact
The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation
Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic
- …