7 research outputs found
A Protein Complex Containing Mei5 and Sae3 Promotes the Assembly of the Meiosis-Specific RecA Homolog Dmc1
AbstractMeiotic recombination requires the meiosis-specific RecA homolog Dmc1 as well as the mitotic RecA homolog Rad51. Here, we show that the two meiosis-specific proteins Mei5 and Sae3 are necessary for the assembly of Dmc1, but not for Rad51, on chromosomes including the association of Dmc1 with a recombination hot spot. Mei5, Sae3, and Dmc1 form a ternary and evolutionary conserved complex that requires Rad51 for recruitment to chromosomes. Mei5, Sae3, and Dmc1 are mutually dependent for their chromosome association, and their absence prevents the disassembly of Rad51 filaments. Our results suggest that Mei5 and Sae3 are loading factors for the Dmc1 recombinase and that the Dmc1-Mei5-Sae3 complex is integrated onto Rad51 ensembles and, together with Rad51, plays both catalytic and structural roles in interhomolog recombination during meiosis
Diabetes Mellitus Induces Hyperreactivity of 5-Hydroxytryptamine (5-HT)-Induced Constriction in Human Internal Thoracic Artery and Is Associated with Increase in the Membrane Protein Level of 5-HT<sub>2A</sub> Receptor
Studies indicate that 5-hydroxytryptamine (5-HT) released from activated platelets in coronary artery bypass grafting (CABG) induces 5-HT2A receptor-mediated graft spasm. We previously reported that 5-HT-induced constriction of human endothelium-denuded saphenous vein (SV) was significantly augmented in patients with diabetes mellitus (DM) than in patients without DM (non-DM), without changes in the levels of the membrane-bound 5-HT2A receptor of their smooth muscle cells. Although the internal thoracic artery (ITA) is the key graft conduit for CABG, the effect of DM on the ITA graft spasm is still unclear. Therefore, in this study, we investigated the effect of DM on 5-HT-induced vasoconstriction and the level of membrane-bound 5-HT2A receptor in ITA grafts. 5-HT-induced constriction of the isolated human endothelial-denuded ITA was significantly higher in patients with DM than in patients without DM. In addition, the level of the 5-HT2A receptor in the membrane fraction of human ITA smooth muscle cells was significantly higher in patients with DM than in those without DM. These results demonstrate that DM is a risk factor for CABG in both venous and arterial conduits, and that it differentially affects the level of the membrane-bound 5-HT2A receptor in the venous and arterial smooth muscle cells.九州保健福祉大学201