827 research outputs found

    Photoluminescence response of ion-implanted silicon

    Full text link
    The photoluminescence intensity from ion-implanted silicon can be quenched by the radiation damage implicit in the implantation.Annealing is then required before the intensity of the luminescence from a defect center is approximately proportional to the concentration of that center. Data from positron annihilation and photoluminescence experiments establish that severe quenching of the luminescence occurs when the mean separation of the small vacancy clusters is less than ∼30 atomic spacings, and the authors map out where, in the annealing and implantation phase space, the luminescence intensity is expected to be approximately proportional to the concentration of the optical centers.This work was supported by EPSRC Grant No. GR/ R10820/01 and by the EU Co-ordination Action programme CADRES. One of the authors J.W.-L. acknowledges the support of the Australian Research Council

    Prospects for improving the sensitivity of KAGRA gravitational wave detector

    Full text link
    KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine data sets containing simulated gravitational wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. Here we describe the challenges, summarise the results, and provide a first critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference, clarified some text, removed typos. Results unchanged; Removed author, minor edits, reflects submitted versio

    The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3

    Get PDF
    The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol-gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood

    Determination of the angular momentum distribution of supernovae from gravitational wave observations

    Full text link
    Significant progress has been made in the development of an international network of gravitational wave detectors, such as TAMA300, LIGO, VIRGO, and GEO600. For these detectors, one of the most promising sources of gravitational waves are core collapse supernovae especially in our Galaxy. Recent simulations of core collapse supernovae, rigorously carried out by various groups, show that the features of the waveforms are determined by the rotational profiles of the core, such as the rotation rate and the degree of the differential rotation prior to core-collapse. Specifically, it has been predicted that the sign of the second largest peak in the gravitational wave strain signal is negative if the core rotates cylindrically with strong differential rotation. The sign of the second peak could be a nice indicator that provides us with information about the angular momentum distribution of the core, unseen without gravitational wave signals. Here we present a data analysis procedure aiming at the detection of the second peak using a coherent network analysis and estimate the detection efficiency when a supernova is at the sky location of the Galactic center. The simulations showed we were able to determine the sign of the second peak under an idealized condition of a network of gravitational wave detectors if a supernova occurs at the Galactic center.Comment: 9 pages, 11 figures, add references and some sentenses. To appear on CQ

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Applicability of the Leiden Convention and the Lipton classification in patients with a single coronary artery in the setting of congenital heart disease

    Get PDF
    Background In single coronary artery (SCA) anatomy, all coronary tributaries arise from a single ostium, providing perfusion to the entire myocardium. Coronary classification systems can facilitate the description of SCA anatomy. Aim: Evaluation of the applicability of Lipton classification and the Leiden Convention coronary coding system in SCA. Methods: All patients (n = 6209) who underwent computed tomography (CT) scanning between 2014 and 2018 were retrospectively examined for the presence of SCA and classified, according to Lipton classification and the Leiden Convention coronary coding system. Results: The prevalence of SCA was 0.51% (32/6209). Twenty-eight patients (87.5%) had coexisting congenital heart disease (CHD), most frequently pulmonary atresia (9/32, 28.1%). Ten patients (10/32, 31.25%) could not be classified with either the Leiden Convention or Lipton classification (pulmonary atresia n = 9, common arterial trunk (CAT) n = 1). In one case with CAT, Lipton classification, but not the Leiden Convention, could be applied. In two cases with the transposition of the great arteries and in two cases of double outlet right ventricle, the Leiden Convention, but not the Lipton classification, could be applied. Conclusions: Both classifications are useful to detail information about SCA. As Lipton classification was not developed for structural heart disease cases, in complex CHD with abnormal position of the great arteries, the Leiden Convention is better applicable. The use of both systems is limited in pulmonary atresia. In this scenario, it is better to provide a precise description of the coronary origin and associated characteristics that might affect treatment and prognosis.Cardiolog

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    • …
    corecore