182 research outputs found

    Quantum strain sensor with a topological insulator HgTe quantum dot

    Full text link
    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band kp Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian.Comment: 4 figure

    Quantum circuits based on coded qubits encoded in chirality of electron spin complexes in triple quantum dots

    Full text link
    We present a theory of quantum circuits based on logical qubits encoded in chirality of electron spin complexes in lateral gated semiconductor triple quantum dot molecules with one electron spin in each dot. Using microscopic Hamiltonian we show how to initialize, coherently control and measure the quantum state of a chirality based coded qubit using static in-plane magnetic field and voltage tuning of individual dots. The microscopic model of two interacting coded qubits is established and mapped to an Ising Hamiltonian, resulting in conditional two-qubit phase gate

    Charged Excitons in a Dilute 2D Electron Gas in a High Magnetic Field

    Full text link
    A theory of charged excitons X- in a dilute 2D electron gas in a high magnetic field is presented. In contrast to previous calculations, three bound X- states (one singlet and two triplets) are found in a narrow and symmetric GaAs quantum well. The singlet and a "bright" triplet are the two optically active states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the singlet and a "dark" triplet. The interaction of bound X-'s with a dilute 2D electron gas is investigated using exact diagonalization techniques. It is found that the short-range character of the e:X- interactions effectively isolates bound X- states from a dilute e-h plasma. This results in the insensitivity of the photoluminescence spectrum to the filling factor nu, and an exponential decrease of the oscillator strength of the dark triplet X- as a function of 1/nu$.Comment: 8 pages, 5 figures, submitted to Phys.Rev.

    Atomistic theory of electronic and optical properties of InAs/InP self-assembled quantum dots on patterned substrates

    Full text link
    We report on a atomistic theory of electronic structure and optical properties of a single InAs quantum dot grown on InP patterned substrate. The spatial positioning of individual dots using InP nano-templates results in a quantum dot embedded in InP pyramid. The strain distribution of a quantum dot in InP pyramid is calculated using the continuum elasticity theory. The electron and valence hole single-particle states are calculated using atomistic effective-bond-orbital model with second nearest-neighbor interactions, coupled to strain via Bir-Pikus Hamiltonian. The optical properties are determined by solving many-exciton Hamiltonian for interacting electron and hole complexes using the configuration-interaction method. The effect of positioning of quantum dots using nanotemplate on their optical spectra is determined by a comparison with dots on unpatterned substrates, and with experimental results. The possibility of tuning the quantum dot properties with varying the nano-template is explored.Comment: 9 pages, 12 figure
    • …
    corecore