46 research outputs found

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Oviposition Preference and Offspring Performance In Container Breeding Mosquitoes: Evaluating the Effects of Organic Compounds and Laboratory Colonisation

    Get PDF
    1. The preference–performance hypothesis (PPH) predicts that organisms lacking parental care should oviposit in habitats that optimise offspring performance. Preference–performance relationships were investigated for the Asian tiger mosquito (Aedes albopictus Skuse) and the southern house mosquito (Culex quinquefasciatus Say) (Diptera: Culicidae), two medically important container-breeding species, in response to an organic chemical blend mimicking decaying plant matter. Additionally, the effects of long-term laboratory colonisation of Cx. quinquefasciatus using wild and laboratory strains were evaluated. 2. Oviposition bioassays were conducted by releasing gravid mosquitoes into field enclosures with automobile tires containing low and high concentrations of the chemical blend, and water controls. The offspring were then reared in water collected from the tires in which they were deposited. 3. Aedes albopictus and wild Cx. quinquefasciatus laid more eggs in the chemical blend than water controls but did not differentiate between the low and high concentrations. Conversely, laboratory Cx. quinquefasciatus only preferred the high concentration to the low concentration. No statistical associations between oviposition preference and larval survival were found, as the chemical blend did not affect survivorship of either species. 4. The oviposition preference for the chemical blend over water controls suggests that both species oviposit in the best available resource environment, but further studies are needed before conclusions regarding preference–performance relationships can be drawn. 5. It was found that long-term laboratory colonisation affects the oviposition behaviour in Cx. quinquefasciatus, suggesting that behavioural studies on laboratory strains are not always applicable to wild populations
    corecore