2 research outputs found
Theory of Umklapp-assisted recombination of bound excitons in Si:P
We present the calculations for the oscillator strength of the recombination
of excitons bound to phosphorous donors in silicon. We show that the direct
recombination of the bound exciton cannot account for the experimentally
measured oscillator strength of the no-phonon line. Instead, the recombination
process is assisted by an umklapp process of the donor electron state. We make
use of the empirical pseudopotential method to evaluate the Umklapp-assisted
recombination matrix element in second-order perturbation theory. Our result is
in excellent agreement with the experiment. We also present two methods to
improve the optical resolution of the optical detection of the spin state of a
single nucleus in silicon.Comment: 9 pages, 6 EPS figures, Revtex
Recommended from our members
Characterization of Si(100) homoepitaxy grown in the STM at low temperatures
We explore the growth of low-temperature bulk-like Si(100) homoepitaxy with regard to microscopic surface roughness and defects We characterize films grown at different temperatures up to 500K in-situ by means of an effusion cell added to our UHVSTM. The development of novel architectures for future generation computers calls for high-quality homoepitaxial (WOO) grown at low temperature. Even though Si(100) can be grown crystalline up to a limited thickness: the microstructure reveals significant small-scale surface roughness and defects specific to low-temperature growth. Both can he detrimental to fabrication and operation of small-scale electronic devices