10,030 research outputs found
Suppression of Subsynchronous Vibration in the SSME HPFTP
Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) hot-fire dynamic data evaluation and rotordynamic analysis both confirm that two of the most significant turbopump attributes in determining susceptibility to subsynchronous vibration are impeller interstage seal configuration and rotor sideload resulting from turbine turnaround duct configuration and hot gas manifold. Recent hot-fire testing has provided promising indications that the incorporation of roughened damping seals at the impeller interstages may further increase the stability margin of this machine. A summary of the analysis which led to the conclusion that roughened seals would enhance the stability margin is presented along with a correlation of the analysis with recent test data
A Safety Case Pattern for Model-Based Development Approach
In this paper, a safety case pattern is introduced to facilitate the presentation of a correctness argument for a system implemented using formal methods in the development process. We took advantage of our experience in constructing a safety case for the Patient Controlled Analgesic (PCA) infusion pump, to define this safety case pattern. The proposed pattern is appropriate to be instantiated within the safety cases constructed for systems that are developed by applying model-based approaches
Gamma Group-The Pale Horse: A proposal in response to a commercial air transportation study ort study
A conventional remotely piloted vehicle (RPV) was designed to operate in a fictional 'Aeroworld' as a 30 passenger aircraft. The topics addressed include: economic/cost analysis, aerodynamics, weight and structures, propulsion, stability and control, and performance
Causal structure of the entanglement renormalization ansatz
We show that the multiscale entanglement renormalization ansatz (MERA) can be
reformulated in terms of a causality constraint on discrete quantum dynamics.
This causal structure is that of de Sitter space with a flat spacelike
boundary, where the volume of a spacetime region corresponds to the number of
variational parameters it contains. This result clarifies the nature of the
ansatz, and suggests a generalization to quantum field theory. It also
constitutes an independent justification of the connection between MERA and
hyperbolic geometry which was proposed as a concrete implementation of the
AdS-CFT correspondence
Measuring patient-perceived quality of care in US hospitals using Twitter
BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404â
065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11â
602 tweets were manually categorised into patient experience topics. Finally, hospitals with â„50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34â
725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with â„50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators
Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and ÎČ\u3csub\u3e2\u3c/sub\u3e-agonist use
Background
Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this brake on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo ÎČ2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion.
Methods
Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for ÎČ2-adrenergic receptor haplotype determination.
Results
Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the ÎČ2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP.
Conclusion
Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to ÎČ-agonist. The decreased phosphorylation does not appear to be associated with a particular ÎČ2-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair
Phenomenological Constraints on Extended Quark Sectors
We study the flavor physics in two extensions of the quark sector of the
Standard Model (SM): a four generation model and a model with a single
vector--like down--type quark (VDQ). In our analysis we take into account the
experimental constraints from tree--level charged current processes, rare Kaon
decay processes, rare B decay processes, the decay, ,
and mass differences, and the CP violating parameters \frac
\epsilon^\prime}{\epsilon}, and . All the constraints
are taken at two sigma. We find bounds on parameters which can be used to
represent the New Physics contributions in these models (, and in the
four--generation model, and , and in the VDQ model)
due to all the above constraints. In both models the predicted ranges for
(the CP asymmetry in semi-leptonic decays), ,
, and can be significantly higher than the predictions of the
SM, while the allowed ranges for and for are
consistent with the SM prediction.Comment: 22 pages, 5 figures (v3: added a reference, updated a reference,
added missing units
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields
Spectral engineering of optical fiber preforms through active nanoparticle doping
Europium doped alkaline earth fluoride [Eu:AEF(2) (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, tau, of the Eu3+ emission that follows the cationic mass; tau(Ca) \u3c tau(Sr) \u3c tau(Ba) with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise standard materials, e.g., vapor-derived silica, in next generation optical fibers
Spectral Engineering of Optical Fiber Preforms Through Active Nanoparticle Doping
Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, Ï, of the Eu3+ emission that follows the cationic mass; ÏCa \u3c ÏSr \u3c ÏBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise âstandardâ materials, e.g., vapor-derived silica, in next generation optical fibers
- âŠ