2 research outputs found

    Disordered locality in loop quantum gravity states

    Get PDF
    We show that loop quantum gravity suffers from a potential problem with non-locality, coming from a mismatch between micro-locality, as defined by the combinatorial structures of their microscopic states, and macro-locality, defined by the metric which emerges from the low energy limit. As a result, the low energy limit may suffer from a disordered locality characterized by identifications of far away points. We argue that if such defects in locality are rare enough they will be difficult to detect.Comment: 11 pages, 4 figures, revision with extended discussion of result

    Evolution in Quantum Causal Histories

    Get PDF
    We provide a precise definition and analysis of quantum causal histories (QCH). A QCH consists of a discrete, locally finite, causal pre-spacetime with matrix algebras encoding the quantum structure at each event. The evolution of quantum states and observables is described by completely positive maps between the algebras at causally related events. We show that this local description of evolution is sufficient and that unitary evolution can be recovered wherever it should actually be expected. This formalism may describe a quantum cosmology without an assumption of global hyperbolicity; it is thus more general than the Wheeler-DeWitt approach. The structure of a QCH is also closely related to quantum information theory and algebraic quantum field theory on a causal set.Comment: 20 pages. 8 figures. (v3: minor corrections, additional references [2,3]) to appear in CQ
    corecore