8,457 research outputs found

    Gauge fields, ripples and wrinkles in graphene layers

    Full text link
    We analyze elastic deformations of graphene sheets which lead to effective gauge fields acting on the charge carriers. Corrugations in the substrate induce stresses, which, in turn, can give rise to mechanical instabilities and the formation of wrinkles. Similar effects may take place in suspended graphene samples under tension.Comment: contribution to the special issue of Solid State Communications on graphen

    Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Full text link
    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors [1-4]. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T-H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure

    Evolution in Quantum Causal Histories

    Get PDF
    We provide a precise definition and analysis of quantum causal histories (QCH). A QCH consists of a discrete, locally finite, causal pre-spacetime with matrix algebras encoding the quantum structure at each event. The evolution of quantum states and observables is described by completely positive maps between the algebras at causally related events. We show that this local description of evolution is sufficient and that unitary evolution can be recovered wherever it should actually be expected. This formalism may describe a quantum cosmology without an assumption of global hyperbolicity; it is thus more general than the Wheeler-DeWitt approach. The structure of a QCH is also closely related to quantum information theory and algebraic quantum field theory on a causal set.Comment: 20 pages. 8 figures. (v3: minor corrections, additional references [2,3]) to appear in CQ
    corecore