1,971 research outputs found

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)−F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)−uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)−Δuˉ(x)=Cxα[dˉ(x)−uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C≃−2.0C \simeq -2.0 (and α≃0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late

    Human eosinophil-airway smooth muscle cell interactions.

    Get PDF
    Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC) and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24h with TNF-alpha, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-alpha

    Gluon distributions in nucleons and pions at a low resolution scale

    Full text link
    In this paper we study the gluon distribution functions in nucleons and pions at a low resolution Q2Q^2 scale. This is an important issue since parton densities at low Q2Q^2 have always been taken as an external input which is adjusted through DGLAP evolution to fit the experimental data at higher scales. Here, in the framework of a model recently developed, it is shown that the hypothetical cloud of {\it neutral} pions surrounding nucleons and pions appears to be responsible for the characteristic valence-like gluon distributions needed at the inital low scale. As an additional result, we get the remarkable prediction that neutral and charged pions have different intrinsic sea flavor contents.Comment: final version to appear in Phys. Rev. D. Discussion on several points enlarge

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    Isovector unpolarized quark distribution in the nucleon in the large-N_c limit

    Get PDF
    We calculate the isovector (flavor-nonsinglet) unpolarized quark- and antiquark distributions in the nucleon at a low normalization point in the large-N_c limit. The nucleon is described as a soliton of the effective chiral theory. The isovector distribution appears in the next-to-leading order of the 1/N_c-expansion. Numerical results for the quark- and antiquark distributions compare well with the parametrizations of the data at a low normalization point. This large-N_c approach gives a flavor asymmetry of the antiquark distribution (violation of the Gottfried sum rule) in good agreement with the measurements.Comment: 31 pages, LaTeX, 1 table, 4 figures included using eps

    Next-to-Leading Order Constituent Quark Structure and Hadronic Structure Functions

    Get PDF
    We calculate the partonic structure of a constituent quark in the Next-to-Leading Order framework. The structure of any hadron can be obtained thereafter using a convolution method. Such a procedure is used to generate the structure function of proton and pion in NLO, neglecting certain corrections to ΛQCD\Lambda_{QCD}. It is shown that while the constituent quark structure is generated purely perturbatively and accounts for the most part of the hadronic structure, there is a few percent contributions coming from the nonperturbative sector in the hadronic structure. This contribution plays the key role in explaining the SU(2) symmetry breaking of the nucleon sea and the observed violation of Gottfried sum rule. These effects are calculated. We obtained an Excellent agreement with the experimental data in a wide range of x=[10−6,1]x=[10^{-6}, 1] and Q2=[0.5,5000]Q^{2}=[0.5, 5000] GeV2GeV^{2} for the proton structure function. We have also calculated Pion structure and compared it with the existing data. Again, the model calculations agree rather well with the data from experiment.Comment: 32 pages,10 figures, Accepted to publish in Phys. Rev.

    Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --

    Full text link
    Theoretical predictions are given for the light-flavor sea-quark distributions including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken here of the SU(3) symmetry breaking effects due to the mass difference between the strange and nonstrange quarks. This effective mass difference Δms\Delta m_s between the strange and nonstrange quarks is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables dˉ(x)−uˉ(x),dˉ(x)/uˉ(x),Δuˉ(x)−Δdˉ(x)\bar{d} (x) - \bar{u} (x), \bar{d} (x) / \bar{u} (x), \Delta \bar{u} (x) - \Delta \bar{d} (x) as well as on the {\it particle-antiparticle asymmetry} of the strange quark distributions represented by s(x)−sˉ(x),s(x)/sˉ(x),Δs(x)−Δsˉ(x)s (x) - \bar{s} (x), s (x) / \bar{s} (x), \Delta s (x) - \Delta \bar{s} (x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for dˉ(x)−uˉ(x)\bar{d} (x) - \bar{u} (x), the E866 data for dˉ(x)/uˉ(x)\bar{d} (x) / \bar{u} (x), the CCFR data and Barone et al.'s fit for s(x)/sˉ(x)s (x) / \bar{s} (x) etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)â‰ȘΔsˉ(x)â‰Č0\Delta s (x) \ll \Delta \bar{s}(x) \lesssim 0 and Δdˉ(x)<0<Δuˉ(x)\Delta \bar{d}(x) < 0 < \Delta \bar{u}(x), although the verification of these predictions must await more elaborate experimental investigations in the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for publication in Phys. Rev. D. The title has been changed, and the body of the paper has been divided into two pieces, i.e.. the present one which discusses the main phenomenological predictions of the model and the other one which describes the detailed formulation of the flavor SU(3) chiral quark soliton model to predict light-flavor quark and antiquark distribution functions in the nucleo

    Non-perturbative structure of the polarized nucleon sea

    Full text link
    We investigate the flavour and quark-antiquark structure of the polarized nucleon by calculating the parton distribution functions of the nucleon sea using the meson cloud model. We find that the SU(2) flavor symmetry in the light antiquark sea and quark-antiquark symmetry in the strange quark sea are broken, {\it i.e.} \Delta\ubar < \Delta \dbar and \Delta s < \Delta \sbar. The polarization of the strange sea is found to be positive, which is in contradiction to previous analyses. We predict a much larger quark-antiquark asymmetry in the polarized strange quark sea than that in the unpolarized strange quark sea. Our results for both polarized light quark sea and polarized strange quark sea are consistent with the recent HERMES data.Comment: RevTex, 17 pages plus 8 PS figure

    Polarized light-flavor antiquarks from Drell-Yan processes of h+\vec{N}\to\vec{l^{+-}} + l^{-+} + X

    Full text link
    We propose a formula to determine the first moment of difference between the polarized uˉ\bar u- and dˉ\bar d-quarks in the nucleon, {\it i.e.} Δuˉ−Δdˉ\Delta\bar u-\Delta \bar d from the Drell-Yan processes in collisions of unpolarized hadrons with longitudinally polarized nucleons by measuring outgoing lepton helicities. As coefficients in the differential cross section depend on the uu- and dd-quark numbers in the unpolarized hadron beam, the difference Δuˉ−Δdˉ\Delta\bar u-\Delta\bar d can be independently tested by changing the hadron beam. Moreover, a formula for estimating the KK-factor in Drell-Yan processes is also suggested.Comment: 10 pages, 1 figur

    dbar/ubar Asymmetry and the Origin of the Nucleon Sea

    Full text link
    The Drell-Yan cross section ratios, σ(p+d)/σ(p+p)\sigma(p+d)/\sigma(p+p), measured in Fermilab E866, have led to the first determination of dˉ(x)/uˉ(x)\bar d(x) / \bar u(x), dˉ(x)−uˉ(x)\bar d(x) - \bar u(x), and the integral of dˉ(x)−uˉ(x)\bar d(x) - \bar u(x) for the proton over the range 0.02≀x≀0.3450.02 \le x \le 0.345. The E866 results are compared with predictions based on parton distribution functions and various theoretical models. The relationship between the E866 results and the NMC measurement of the Gottfried integral is discussed. The agreement between the E866 results and models employing virtual mesons indicates these non-perturbative processes play an important role in the origin of the dˉ\bar d, uˉ\bar u asymmetry in the nucleon sea.Comment: 5 pages, 3 figures, ReVTe
    • 

    corecore