6 research outputs found

    Measurement And Calculation Of A Self-Equalized Tilting-Pad Thrust Bearing Under Static Misalignment

    Get PDF
    LectureTilting-pad thrust bearings which include a self-equalizing feature, ensure reliable and safe operation especially under conditions on which misalignment between bearing and collar occurs. One common method to incorporate such a self-equalizing feature to a thrust tilting-pad bearing is the usage of leveling links. Radii and spherical contacts ensure a free rolling surface between the links, thrust pads and bearing housing. However, the verification whether a design works properly can be relatively challenging. For example, the friction forces between all the radii contacts always lead to different residual misalignments between the pads. This leads to a periodic rotational distribution of the hydrodynamic pressure and thus to different temperatures of each pad. This paper shows detailed measurements of a self-equalizing thrust tilting-pad bearing using leveling links. The test campaign includes a wide range of bearing to collar misalignment and operating conditions. The measurements show, that such a mechanical equalizing-mechanism may sufficiently balance very large deflections, despite the fact, that the residual pad misalignment of each pad due to friction lead to a relative high temperature difference between the pads. Furthermore, the paper presents a methodology of calculating the bearing behavior of self-equalizing thrust bearings to generate a better understanding and assessment of the proper function of such a bearing design. It presents the development of a mechanical model, which can iteratively solve a FEA software and a thermo-elastic-hydrodynamic (TEHD) software for fluid-film bearings

    An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change

    Get PDF
    Previous studies have projected a significant role for bioenergy in decarbonizing the global economy and helping realize international climate goals such as limiting global average warming to 2 ˚C or 1.5 ˚C. However, with substantial variability in bioenergy results and significant concerns about potential environmental and social implications, greater transparency and dedicated assessment of the underlying modeling and results and more detailed understanding of the potential role of bioenergy are needed. Stanford University’s Energy Modeling Forum (EMF) initiated a 33rd study (EMF-33) to explore the viability of large-scale bioenergy as part of a comprehensive climate management strategy. This special issue presents the papers of the EMF-33 study—a multi-year inter-model comparison project designed to understand and assess global, long-run biomass supply and bioenergy deployment potentials and related uncertainties. Using a novel scenario design with independent biomass supply and bioenergy demand protocols, EMF-33 separately elucidates and explores the modeling of biomass feedstock supplies and bioenergy technologies and their deployment—revealing, comparing, and assessing the modeling that is suggesting that bioenergy could be a key climate containment strategy. This introduction provides an overview of the EMF-33 study design and the overview, thematic, and individual modeling team papers and types of insights that make up this special issue. By providing enhanced transparency and new detailed insights, we hope to inform policy dialogue about the potential role of bioenergy and facilitate new research

    An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change

    Get PDF
    Previous studies have projected a significant role for bioenergy in decarbonizing the global economy and helping realize international climate goals such as limiting global average warming to 2 ˚C or 1.5 ˚C. However, with substantial variability in bioenergy results and significant concerns about potential environmental and social implications, greater transparency and dedicated assessment of the underlying modeling and results and more detailed understanding of the potential role of bioenergy are needed. Stanford University’s Energy Modeling Forum (EMF) initiated a 33rd study (EMF-33) to explore the viability of large-scale bioenergy as part of a comprehensive climate management strategy. This special issue presents the papers of the EMF-33 study—a multi-year inter-model comparison project designed to understand and assess global, long-run biomass supply and bioenergy deployment potentials and related uncertainties. Using a novel scenario design with independent biomass supply and bioenergy demand protocols, EMF-33 separately elucidates and explores the modeling of biomass feedstock supplies and bioenergy technologies and their deployment—revealing, comparing, and assessing the modeling that is suggesting that bioenergy could be a key climate containment strategy. This introduction provides an overview of the EMF-33 study design and the overview, thematic, and individual modeling team papers and types of insights that make up this special issue. By providing enhanced transparency and new detailed insights, we hope to inform policy dialogue about the potential role of bioenergy and facilitate new research

    An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change

    Get PDF
    Previous studies have projected a significant role for bioenergy in decarbonizing the global economy and helping realize international climate goals such as limiting global average warming to 2 ˚C or 1.5 ˚C. However, with substantial variability in bioenergy results and significant concerns about potential environmental and social implications, greater transparency and dedicated assessment of the underlying modeling and results and more detailed understanding of the potential role of bioenergy are needed. Stanford University’s Energy Modeling Forum (EMF) initiated a 33rd study (EMF-33) to explore the viability of large-scale bioenergy as part of a comprehensive climate management strategy. This special issue presents the papers of the EMF-33 study—a multi-year inter-model comparison project designed to understand and assess global, long-run biomass supply and bioenergy deployment potentials and related uncertainties. Using a novel scenario design with independent biomass supply and bioenergy demand protocols, EMF-33 separately elucidates and explores the modeling of biomass feedstock supplies and bioenergy technologies and their deployment—revealing, comparing, and assessing the modeling that is suggesting that bioenergy could be a key climate containment strategy. This introduction provides an overview of the EMF-33 study design and the overview, thematic, and individual modeling team papers and types of insights that make up this special issue. By providing enhanced transparency and new detailed insights, we hope to inform policy dialogue about the potential role of bioenergy and facilitate new research

    Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives

    Get PDF
    Abstract Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability

    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

    No full text
    Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6)
    corecore