8 research outputs found

    Evidence for abundant transcription of non-coding regions in the Saccharomyces cerevisiae genome

    Get PDF
    Background: Recent studies in a growing number of organisms have yielded accumulating evidence that a significant portion of the non-coding region in the genome is transcribed. We address this issue in the yeast Saccharomyces cerevisiae. Results: Taking into account the absence of a significantly large yeast EST database, we use microarray expression data collected for genomic regions erroneously believed to be coding to study the expression pattern of non-coding regions in the Saccharomyces cerevisiae genome. We find that at least 164 out of 589 (28%) such regions are expressed under specific biological conditions. In particular, looking at the probes that are located opposing other known genes at the same genomic locus, we find that 88 out of 341 (26%) of these genes support antisense transcription. The expression patterns of these antisense genes are positively correlated. We validate these results using RT-PCR on a sample of 6 non-coding transcripts. Conclusions: 1. The yeast genome is transcribed on a scale larger than previously assumed. 2. Correlated transcription of antisense genes is abundant in the yeast genome. 3. Antisense genes in yeast are non-coding.Comment: Journal version available at http://www.biomedcentral.com/1471-2164/6/93/abstrac

    Superconductivity and Quantum Spin Disorder in Cuprates

    Full text link
    A fundamental connection between superconductivity and quantum spin fluctuations in underdoped cuprates, is revealed. A variational calculation shows that {\em Cooper pair hopping} strongly reduces the local magnetization m0m_0. This effect pertains to recent neutron scattering and muon spin rotation measurements in which m0m_0 varies weakly with hole doping in the poorly conducting regime, but drops precipitously above the onset of superconductivity

    Intensity-Based Statistical Scorer for Tandem Mass Spectrometry

    No full text

    Toward earlier detection of choroidal neovascularization secondary to age-related macular degeneration: Multicenter evaluation of a preferential hyperacuity perimeter designed as a home device

    No full text
    Purpose: The primary purpose of this study was to evaluate the ability of a home device preferential hyperacuity perimeter to discriminate between patients with choroidal neovascularization (CNV) and intermediate age-related macular degeneration (AMD), and the secondary purpose was to investigate the dependence of sensitivity on lesion characteristics. Methods: All participants were tested with the home device in an unsupervised mode. The first part of this work was retrospective using tests performed by patients with intermediate AMD and newly diagnosed CNV. In the second part, the classifier was prospectively challenged with tests performed by patients with intermediate AMD and newly diagnosed CNV. The dependence of sensitivity on lesion characteristics was estimated with tests performed by patients with CNV of both parts. Results: In 66 eyes with CNV and 65 eyes with intermediate AMD, both sensitivity and specificity were 0.85. In the retrospective part (34 CNV and 43 intermediate AMD), sensitivity and specificity were 0.85 ± 0.12 (95% confidence interval) and 0.84 ± 0.11 (95% confidence interval), respectively. In the prospective part (32 CNV and 22 intermediate AMD), sensitivity and specificity were 0.84 ± 0.13 (95% confidence interval) and 0.86 ± 0.14 (95% confidence interval), respectively. Chi-square analysis showed no dependence of sensitivity on type (P = 0.44), location (P = 0.243), or size (P = 0.73) of the CNV lesions. Conclusion: A home device preferential hyperacuity perimeter has good sensitivity and specificity in discriminating between patients with newly diagnosed CNV and intermediate AMD. Sensitivity is not dependent on lesion characteristics. © The Ophthalmic Communications Society, Inc
    corecore