92 research outputs found
Increased primary health care use in the first year after colorectal cancer diagnosis
OBJECTIVE: The view that the general practitioner (GP) should be more involved during the curative treatment of cancer is gaining support. This study aimed to assess the current role of the GP during treatment of patients with colorectal cancer (CRC). DESIGN: Historical prospective study, using primary care data from two cohorts. SETTING: Registration Network Groningen (RNG) consisting of 18 GPs in three group practices with a dynamic population of about 30,000 patients. SUBJECTS: Patients who underwent curative treatment for CRC (n = 124) and matched primary care patients without CRC (reference population; n = 358). MAIN OUTCOME MEASURES: Primary healthcare use in the period 1998-2009. FINDINGS: Patients with CRC had higher primary healthcare use in the year after diagnosis compared with the reference population. After correction for age, gender, and consultation behaviour, CRC patients had 54% (range 23-92%) more face-to-face contacts, 68% (range 36-108%) more drug prescriptions, and 35% (range -4-90%) more referrals compared with reference patients. Patients consulted their GP more often for reasons related to anaemia, abdominal pain, constipation, skin problems, and urinary infections. GPs also prescribed more acid reflux drugs, laxatives, anti-anaemic preparations, analgesics, and psycholeptics for CRC patients. CONCLUSIONS: The GP plays a significant role in the year after CRC diagnosis. This role may be associated with treatment-related side effects and psychological problems. Formal guidelines on the involvement of the GP during CRC treatment might ensure more effective allocation and communication of care between primary and secondary healthcare services
Appreciation of the research supervisory relationship by postgraduate nursing students
INTRODUCTION : The quality of the relationship between postgraduate students and their supervisors
often determines the progress of the students.
BACKGROUND : Successful supervision according to students is associated with the expertise of the
supervisors in research and the academic discipline and their willingness to share their knowledge and
skills with their students. On the other hand supervisors expect their students to be knowledgeable in
research methods and to be able to work to a large extent independently. Contradictory expectation of
supervisors and postgraduate students can cause delays in the progress of students.
AIM: The aim of this study was to explore and describe the aspects of the supervisory
relationship that postgraduate students in nursing science at a selected university in South
Africa appreciate.
METHOD : A qualitative research design with an appreciative inquiry approach was used and 18
students under the guidance of an independent facilitator provided the data during group interviews.
FINDINGS AND DISCUSSION : Specific personal and professional qualities of the supervisors contribute to
a valued supervisory relationship. Regarding personal qualities the supervisors should show their
understanding of the unique circumstances of the students and portray a positive attitude to encourage
them to persevere in challenging times. Supervisors should also be expert researchers who ensure that
the students produce quality dissertations and thesis. The valued relationship refers to an open and
trusting relationship between the students and supervisors.
CONCLUSION : The students‟ appreciation of the research supervisory relationship contributes to the
understanding of the expectations of postgraduate students regarding support that they need to become
scholars in an academic discipline.
IMPLICATIONS FOR NURSING AND HEALTH POLICY : There is a need for continuing professional development
of supervisors to sensitize them about the expectations of students. The students should be orientated
regarding the support that they can expect from their supervisors.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1466-76572017-03-31hb2016Nursing Scienc
Increased primary health care use in the fi rst year after colorectal cancer diagnosis
Abstract Objective. The view that the general practitioner (GP) should be more involved during the curative treatment of cancer is gaining support. This study aimed to assess the current role of the GP during treatment of patients with colorectal cancer (CRC). Design. Historical prospective study, using primary care data from two cohorts. Setting. Registration Network Groningen (RNG) consisting of 18 GPs in three group practices with a dynamic population of about 30 000 patients. Subjects. Patients who underwent curative treatment for CRC (n ϭ 124) and matched primary care patients without CRC (reference population; n ϭ 358). Main outcome measures. Primary healthcare use in the period 1998 -2009. Findings . Patients with CRC had higher primary healthcare use in the year after diagnosis compared with the reference population. After correction for age, gender, and consultation behaviour, CRC patients had 54% (range 23 -92%) more face-to-face contacts, 68% (range 36 -108%) more drug prescriptions, and 35% (range -4 -90%) more referrals compared with reference patients. Patients consulted their GP more often for reasons related to anaemia, abdominal pain, constipation, skin problems, and urinary infections. GPs also prescribed more acid refl ux drugs, laxatives, anti-anaemic preparations, analgesics, and psycholeptics for CRC patients. Conclusions. The GP plays a signifi cant role in the year after CRC diagnosis. This role may be associated with treatment-related side effects and psychological problems. Formal guidelines on the involvement of the GP during CRC treatment might ensure more effective allocation and communication of care between primary and secondary healthcare services
Level of Arterial Ligation in Rectal Cancer Surgery: Low Tie Preferred over High Tie. A Review
Consensus does not exist on the level of arterial ligation in rectal cancer surgery. From oncologic considerations, many surgeons apply high tie arterial ligation (level of inferior mesenteric artery). Other strategies include ligation at the level of the superior rectal artery, just caudally to the origin of the left colic artery (low tie), and ligation at a level without any intraoperative definition of the inferior mesenteric or superior rectal arteries
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio
Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)
In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described
Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: Study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)
Background: A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods: Thismulticentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2- week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged usingMRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8Gy in radiotherapy-naive patients, and 15 × 2.0Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-termoncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion: This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric
Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the
COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the
differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019.
By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air
quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of
PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial
lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is
based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63
cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant
concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were
calculated and the possible effects of meteorological conditions were analysed by computing anomalies from
ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions
in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and
mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for
other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change
in air quality.
As a global and regional overview of the changes in ambient concentrations of key air quality species, we
observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations
over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals,
even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport
of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities
showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary
PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases
(as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America,
respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for
2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that
specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the
NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2
+ O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at
background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations.
The present study clearly highlights the importance of meteorology and episodic contributions (e.g.,
from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around
cities even during large emissions reductions. There is still the need to better understand how the chemical
responses of secondary pollutants to emission change under complex meteorological conditions, along with
climate change and socio-economic drivers may affect future air quality. The implications for regional and global
policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the
World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility.
Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that
are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch
programme is gratefully acknowledged for initiating and coordinating
this study and for supporting this publication.
We acknowledge the following projects for supporting the analysis
contained in this article:
Air Pollution and Human Health for an Indian Megacity project
PROMOTE funded by UK NERC and the Indian MOES, Grant reference
number NE/P016391/1;
Regarding project funding from the European Commission, the sole
responsibility of this publication lies with the authors. The European
Commission is not responsible for any use that may be made of the information
contained therein.
This project has received funding from the European Commission’s
Horizon 2020 research and innovation program under grant agreement
No 874990 (EMERGE project).
European Regional Development Fund (project MOBTT42) under the
Mobilitas Pluss programme;
Estonian Research Council (project PRG714);
Estonian Research Infrastructures Roadmap project Estonian Environmental
Observatory (KKOBS, project 2014-2020.4.01.20-0281).
European network for observing our changing planet project (ERAPLANET,
grant agreement no. 689443) under the European Union’s
Horizon 2020 research and innovation program, Estonian Ministry of
Sciences projects (grant nos. P180021, P180274), and the Estonian
Research Infrastructures Roadmap project Estonian Environmental Observatory
(3.2.0304.11-0395).
Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the
European Union’s Horizon 2020 Research and Innovation Programme
(grant agreement no. 856612) and the Government of Cyprus.
INAR acknowledges support by the Russian government (grant
number 14.W03.31.0002), the Ministry of Science and Higher Education
of the Russian Federation (agreement 14.W0331.0006), and the Russian
Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to
data used in our analysis:
A.M. Obukhov Institute of Atmospheric Physics Russian Academy of
Sciences;
Agenzia Regionale per la Protezione dell’Ambiente della Campania
(ARPAC);
Air Quality and Climate Change, Parks and Environment (MetroVancouver,
Government of British Columbia);
Air Quality Monitoring & Reporting, Nova Scotia Environment
(Government of Nova Scotia);
Air Quality Monitoring Network (SIMAT) and Emission Inventory,
Mexico City Environment Secretariat (SEDEMA);
Airparif (owner & provider of the Paris air pollution data);
ARPA Lazio, Italy;
ARPA Lombardia, Italy;
Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de-
France AIRPARIF / Atmo-France;
Bavarian Environment Agency, Germany;
Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz,
Germany;
California Air Resources Board;
Central Pollution Control Board (CPCB), India;
CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil.
China National Environmental Monitoring Centre;
Chandigarh Pollution Control Committee (CPCC), India.
DCMR Rijnmond Environmental Service, the Netherlands.
Department of Labour Inspection, Cyprus;
Department of Natural Resources Management and Environmental
Protection of Moscow.
Environment and Climate Change Canada;
Environmental Monitoring and Science Division Alberta Environment
and Parks (Government of Alberta);
Environmental Protection Authority Victoria (Melbourne, Victoria,
Australia);
Estonian Environmental Research Centre (EERC);
Estonian University of Life Sciences, SMEAR Estonia;
European Regional Development Fund (project MOBTT42) under
the Mobilitas Pluss programme;
Finnish Meteorological Institute;
Helsinki Region Environmental Services Authority;
Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality
Network (LAQN) and the Automatic Urban and Rural Network (AURN)
supported by the Department of Environment, Food and Rural Affairs,
UK Government;
Madrid Municipality;
Met Office Integrated Data Archive System (MIDAS);
Meteorological Service of Canada;
Minist`ere de l’Environnement et de la Lutte contre les changements
climatiques (Gouvernement du Qu´ebec);
Ministry of Environment and Energy, Greece;
Ministry of the Environment (Chile) and National Weather Service
(DMC);
Moscow State Budgetary Environmental Institution
MOSECOMONITORING.
Municipal Department of the Environment SMAC, Brazil;
Municipality of Madrid public open data service;
National institute of environmental research, Korea;
National Meteorology and Hydrology Service (SENAMHI), Peru;
New York State Department of Environmental Conservation;
NSW Department of Planning, Industry and Environment;
Ontario Ministry of the Environment, Conservation and Parks,
Canada;
Public Health Service of Amsterdam (GGD), the Netherlands.
Punjab Pollution Control Board (PPCB), India.
R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal);
Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics,
Russia;
Russian Foundation for Basic Research (project 20–05–00254)
SAFAR-IITM-MoES, India;
S˜ao Paulo State Environmental Protection Agency, CETESB;
Secretaria de Ambiente, DMQ, Ecuador;
Secretaría Distrital de Ambiente, Bogot´a, Colombia.
Secretaria Municipal de Meio Ambiente Rio de Janeiro;
Mexico City Atmospheric Monitoring System (SIMAT); Mexico City
Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA);
SLB-analys, Sweden;
SMEAR Estonia station and Estonian University of Life Sciences
(EULS);
SMEAR stations data and Finnish Center of Excellence;
South African Weather Service and Department of Environment,
Forestry and Fisheries through SAAQIS;
Spanish Ministry for the Ecological Transition and the Demographic
Challenge (MITECO);
University of Helsinki, Finland;
University of Tartu, Tahkuse air monitoring station;
Weather Station of the Institute of Astronomy, Geophysics and Atmospheric
Science of the University of S˜ao Paulo;
West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog
- …