258 research outputs found
Photon creation in a spherical oscillating cavity
We study the photon creation inside a perfectly conducting, spherical
oscillating cavity. The electromagnetic field inside the cavity is described by
means of two scalar fields which satisfy Dirichlet and (generalized) Neumann
boundary conditions. As a preliminary step, we analyze the dynamical Casimir
effect for both scalar fields. We then consider the full electromagnetic case.
The conservation of angular momentum of the electromagnetic field is also
discussed, showing that photons inside the cavity are created in singlet
states.Comment: 14 pages, no figure
Capillary-gravity waves: The effect of viscosity on the wave resistance
The effect of viscosity on the wave resistance experienced by a 2d
perturbation moving at uniform velocity over the free surface of a fluid is
investigated. The analysis is based on Rayleigh's linearized theory of
capillary-gravity waves. It is shown in particular that the wave resistance
remains bounded as the velocity of the perturbation approches the minimun phase
speed, unlike what is predicted by the inviscid theory.Comment: Europhysics Letters, in pres
Observation of Sommerfeld precursors on a fluid surface
We report the observation of two types of Sommerfeld precursors (or
forerunners) on the surface of a layer of mercury. When the fluid depth
increases, we observe a transition between these two precursor surface waves in
good agreement with the predictions of asymptotic analysis. At depths thin
enough compared to the capillary length, high frequency precursors propagate
ahead of the ''main signal'' and their period and amplitude, measured at a
fixed point, increase in time. For larger depths, low frequency ''precursors''
follow the main signal with decreasing period and amplitude. These behaviors
are understood in the framework of the analysis first introduced for linear
transient electromagnetic waves in a dielectric medium by Sommerfeld and
Brillouin [1].Comment: to be published in Physical Review Letter
Vortex Images and q-Elementary Functions
In the present paper problem of vortex images in annular domain between two
coaxial cylinders is solved by the q-elementary functions. We show that all
images are determined completely as poles of the q-logarithmic function, where
dimensionless parameter is given by square ratio of the
cylinder radii. Resulting solution for the complex potential is represented in
terms of the Jackson q-exponential function. By composing pairs of q-exponents
to the first Jacobi theta function and conformal mapping to a rectangular
domain we link our solution with result of Johnson and McDonald. We found that
one vortex cannot remain at rest except at the geometric mean distance, but
must orbit the cylinders with constant angular velocity related to q-harmonic
series. Vortex images in two particular geometries in the limit
are studied.Comment: 17 page
Polygonal N-vortex arrays: A Stuart model
Published versio
Solving Problems of Practice in Education
The authors identify and discuss the many complexities involved in the translation of scientific information in the social sciences into forms usable for solving problems of practice in education. As a means of appropriately handling these complexities and the issues that arise, they prescribe a series of stages to be followed from the advent of a practitioner's situational problem to the design of a response to it. They assert that unless the process of translation is conducted with the prescribed level of understanding, appreciation, and rigor, the application of knowledge will be inaccurate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68934/2/10.1177_107554708400600103.pd
Linear Wave Interaction with a Vertical Cylinder of Arbitrary Cross Section: An Asymptotic Approach
An asymptotic approach to the linear problem of regular water waves interacting with a vertical cylinder of an arbitrary cross section is presented. The incident regular wave was one-dimensional, water was of finite depth, and the rigid cylinder extended from the bottom to the water surface. The nondimensional maximum deviation of the cylinder cross section from a circular one plays the role of a small parameter of the problem. A fifth-order asymptotic solution of the problem was obtained. The problems at each order were solved by the Fourier method. It is shown that the first-order velocity potential is a linear function of the Fourier coefficients of the shape function of the cylinder, the second-order velocity potential is a quadratic function of these coefficients, and so on. The hydrodynamic forces acting on the cylinder and the water surface elevations on the cylinder are presented. The present asymptotic results show good agreement with numerical and experimental results of previous investigations. Long-wave approximation of the hydrodynamic forces was derived and used for validation of the asymptotic solutions. The obtained values of the forces are exact in the limit of zero wave numbers within the linear wave theory. An advantage of the present approach compared with the numerical solution of the problem by an integral equation method is that it provides the forces and the diffracted wave field in terms of the coefficients of the Fourier series of the deviation of the cylinder shape from the circular one. The resulting asymptotic formula can be used for optimization of the cylinder shape in terms of the wave loads and diffracted wave fields
Identification of a myometrial molecular profile for dystocic labor
<p>Abstract</p> <p>Background</p> <p>The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.</p> <p>Methods</p> <p>Myometrial biopsies were obtained from the upper incisional margins of nulliparous women undergoing lower segment CS for dystocia (n = 4) and control women undergoing CS in the second stage who had demonstrated efficient uterine action during the first stage of labor (n = 4). All patients were in spontaneous (non-induced) labor and had received intrapartum oxytocin to accelerate labor. RNA was extracted from biopsies and hybridized to Affymetrix HuGene U133A Plus 2 microarrays. Internal validation was performed using quantitative SYBR Green Real-Time PCR.</p> <p>Results</p> <p>Seventy genes were differentially expressed between the two groups. 58 genes were down-regulated in the dystocia group. Gene ontology analysis revealed 12 of the 58 down-regulated genes were involved in the immune response. These included (ERAP2, (8.67 fold change (FC)) HLA-DQB1 (7.88 FC) CD28 (2.60 FC), LILRA3 (2.87 FC) and TGFBR3 (2.1 FC)) Hierarchical clustering demonstrated a difference in global gene expression patterns between the samples from dystocic and non-dystocic labours. RT-PCR validation was performed on 4 genes ERAP2, CD28, LILRA3 and TGFBR3</p> <p>Conclusion</p> <p>These findings suggest an underlying molecular basis for dystocia in nulliparous women in spontaneous labor. Differentially expressed genes suggest an important role for the immune response in dystocic labor and may provide important indicators for new diagnostic assays and potential intrapartum therapeutic targets.</p
- …