117 research outputs found
Photoprotection in sequestered plastids of sea slugs and respective algal sources
Some sea slugs are capable of retaining functional sequestered chloroplasts (kleptoplasts) for variable
periods of time. The mechanisms supporting the maintenance of these organelles in animal hosts are still
largely unknown. Non-photochemical quenching (NPQ) and the occurrence of a xanthophyll cycle were
investigated in the sea slugs Elysia viridis and E. chlorotica using chlorophyll fluorescence measurements
and pigment analysis. The photoprotective capacity of kleptoplasts was compared to that observed in their
respective algal source, Codium tomentosum and Vaucheria litorea. A functional xanthophyll cycle and a
rapidly reversible NPQ component were found in V. litorea and E. chlorotica but not in C. tomentosum and
E. viridis. To our knowledge, this is the first report of the absence of a functional xanthophyll cycle in a green
macroalgae. The absence of a functional xanthophyll cycle in C. tomentosum could contribute to the
premature loss of photosynthetic activity and relatively short-term retention of kleptoplasts in E. viridis. On
the contrary, E. chlorotica displays one of the longest functional examples of kleptoplasty known so far. We
speculate that different efficiencies of photoprotection and repair mechanisms of algal food sources play a
role in the longevity of photosynthetic activity in kleptoplasts retained by sea slugs
Assessment of airway distribution of transnasal solutions in mice by PET/CT imaging.
PURPOSE: Transnasal administration is one of the most common routes for allergen challenge in mouse models of airway diseases. Although this technique is widely used, neither the amount of allergen that reaches the lung nor its airway distribution has been well established. We used positron emission tomography (PET) and computed tomography (CT) to examine the anatomical distribution of a solution containing a tracer immediately after transnasal delivery and to determine the possible influence of age and administered volume. PROCEDURES: Forty-six female BALB/c mice were divided into three groups according to instillation volume and age: (A) 15 microl, 8-10 weeks old (N = 10), (B) 30 microl, 8-10 weeks old (N = 20), and (C) 30 microl, 32 weeks old (N = 16). Anesthetized animals underwent a dynamic scan in a dedicated small-animal PET scanner immediately after transnasal administration of a solution containing (18)FDG. Regions of interest were used to obtain quantitative data. Animals were also imaged with a small-animal CT scanner to obtain complementary anatomical information. RESULTS: Mean +/- SD (5.69 +/- 4.51%) of the solution administered reached the lungs in group A, 41.84 +/- 8.03% in group B, and 36.65 +/- 16.15% in group C. A comparable percentage was delivered to the left and right lungs in all the groups. Analysis of variance revealed a significant difference between the groups in the proportion of the solution that reached the lungs depending on the injection volume (P < 0.001), but not depending on animal age. CONCLUSIONS: In this first report on quantitative imaging by PET and CT in small animals, we confirmed the suitability of the transnasal route with an instilled volume of 30 microl delivering fluids into the lower airways, although only about 40% of the dose reaches the lungs
Profibrotic effect of IL-9 overexpression in a model of airway remodeling.
<p>IL-9 overexpression protects against alveolar fibrosis induced by crystalline silica particles. This cytokine is also involved in allergic asthma. In the present study, we examined the effect of IL-9 overexpression on the subepithelial fibrotic response, a feature of asthmatic remodeling, induced by chronic exposure to Alternaria alternata extract. IL-9-overexpressing mice (Tg5) and their wild-type counterparts (FVB) were intranasally exposed to A. alternata extract or PBS (controls) twice a week during 3 mo. At the end of the allergic challenge, enhanced pause (Penh) measured in response to methacholine and fibrotic parameters, such as collagen and fibronectin lung content, were significantly higher in Tg5 compared with FVB. Staining of lung sections with Masson's Trichrome also showed more collagen fibers in peribronchial areas of treated Tg5 mice. A similar recruitment of inflammatory cells was observed in challenged FVB and Tg5 mice, except for eosinophils, which were significantly more abundant in the lung of Tg5. High serum levels of IgE and IgG1 in both strains indicated that FVB and Tg5 developed a strong type 2 immune response. The concentration of the eosinophil chemoattractant RANTES and the profibrotic mediator connective tissue growth factor (CTGF) was higher in the BAL of challenged Tg5 than FVB. These results demonstrate a profibrotic role of IL-9 in an airway remodeling model, possibly involving eosinophils and CTGF. These data also highlight a dual role of IL-9 in lung fibrosis, being anti- or profibrotic depending on the alveolar or airway localization of the process, respectively.</p></p
Endothelin-1 is a critical mediator of myogenic tone in tumor arterioles: implications for cancer treatment.
peer reviewedAlthough derived from the host tissue, the tumor vasculature is under the influence of the tumor microenvironment and needs to adapt to the resistance to blood flow inherent to the dynamics of tumor growth. Such vascular remodeling can offer selective targets to pharmacologically modulate tumor perfusion and thereby improve the efficacy of conventional anticancer treatments. Radiotherapy and chemotherapy can, indeed, take advantage of a better tumor oxygenation and drug delivery, respectively, both partly dependent on the tumor blood supply. Here, we showed that isolated tumor arterioles mounted in a pressure myograph have the ability, contrary to size-matched healthy arterioles, to contract in response to a transluminal pressure increase. This myogenic tone was exquisitely dependent on the endothelin-1 pathway because it was completely abolished by the selective endothelin receptor A (ETA) antagonist BQ123. This selectivity was additionally supported by the large increase in endothelin-1 abundance in tumors and the higher density of the ETA receptors in tumor vessels. We also documented by using laser Doppler microprobes and imaging that administration of the ETA antagonist led to a significant increase in tumor blood flow, whereas the perfusion in control healthy tissue was not altered. Finally, we provided evidence that acute administration of the ETA antagonist could significantly stimulate tumor oxygenation, as determined by electron paramagnetic resonance oximetry, and increase the efficacy of low-dose, clinically relevant fractionated radiotherapy. Thus, blocking the tumor-selective increase in the vascular endothelin-1/ETA pathway led us to unravel an important reserve of vasorelaxation that can be exploited to selectively increase tumor response to radiotherapy
- …