643 research outputs found

    An end-to-end-construction for singly periodic minimal surfaces

    Full text link
    We show the existence of various families of properly embedded singly periodic minimal surfaces in R^3 with finite arbitrary genus and Scherk type ends in the quotient. The proof of our results is based on the gluing of small perturbations of pieces of already known minimal surfaces.Comment: 49 page

    Minimal surfaces with positive genus and finite total curvature in H2×R\mathbb{H}^2 \times \mathbb{R}

    Full text link
    We construct the first examples of complete, properly embedded minimal surfaces in H2×R\mathbb{H}^2 \times \mathbb{R} with finite total curvature and positive genus. These are constructed by gluing copies of horizontal catenoids or other nondegenerate summands. We also establish that every horizontal catenoid is nondegenerate. Finally, using the same techniques, we are able to produce properly embedded minimal surfaces with infinitely many ends. Each annular end has finite total curvature and is asymptotic to a vertical totally geodesic plane.Comment: 32 pages, 4 figures. This revised version will appear in Geometry and Topolog

    Regulatory landscape of the Hox transcriptome

    Get PDF
    Precise regulation of Hox gene activity is essential to achieve proper control of animal embryonic development and to avoid generation of a variety of malignancies. This is a multilayered process, including complex polycistronic transcription, RNA processing, microRNA repression, long noncoding RNA regulation and sequence-specific translational control, acting together to achieve robust quantitative and qualitative Hox protein output. For many such mechanisms, the Hox cluster gene network has turned out to serve as a paradigmatic model for their study. In this review, we discuss current knowledge of how the different layers of post-transcriptional regulation and the production of a variety of noncoding RNA species control Hox output, and how this shapes formation of developmental systems that are reproducibly patterned by complex Hox networks.Fundação para a Ciência e a Tecnologia grants: ( PTDC/BEX-BID/0899/2014, SFRH/BD/51876/2012); Santa Casa da Misericordia de Lisboa grant: (SCML-MC-60-2014);info:eu-repo/semantics/publishedVersio

    Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus

    Get PDF
    Adeno-associated virus (AAV) has shown great promise as a gene transfer vector. However, the incubation time needed to attain significant levels of gene expression is often too long for some clinical applications. Self-complementary AAV (scAAV) enters the cell as double stranded DNA, eliminating the step of second-strand synthesis, proven to be the rate-limiting step for gene expression of single-stranded AAV (ssAAV). The aim of this study was to compare the efficiency of these two types of AAV vectors in the murine myocardium. Four day old CD-1 mice were injected with either of the two AAV constructs, both expressing GFP and packaged into the AAV1 capsid. The animals were held for 4, 6, 11 or 21 days, after which they were euthanized and their hearts were excised. Serial sections of the myocardial tissue were used for real-time PCR quantification of AAV genome copies and for confocal microscopy. Although we observed similar numbers of AAV genomes at each of the different time points present in both the scAAV and the ssAAV infected hearts, microscopic analysis showed expression of GFP as early as 4 days in animals injected with the scAAV, while little or no expression was observed with the ssAAV constructs until day 11. AAV transduction of murine myocardium is therefore significantly enhanced using scAAV constructs

    Targeting Gene Expression to Cones With Human Cone Opsin Promoters in Recombinant AAV

    Get PDF
    Specific cone-directed therapy is of high priority in the treatment of human hereditary retinal diseases. However, not much information exists about the specific targeting of photoreceptor subclasses. Three versions of the human red cone opsin promoter (PR0.5, 3LCR-PR0.5 and PR2.1), and the human blue cone opsin promoter HB569, were evaluated for their specificity and robustness in targeting green fluorescent protein (GFP) gene expression to subclasses of cones in the canine retina when used in recombinant adeno-associated viral vectors of serotype 5. The vectors were administered by subretinal injection. The promoter PR2.1 led to most effective and specific expression of GFP in the long- and medium-wavelength-absorbing cones (L/M cones) of normal and diseased retinas. The PR0.5 promoter was not effective. Adding three copies of the 35-bp LCR in front of PR0.5 lead to weak GFP expression in L/M cones. The HB569 promoter was not specific, and GFP was expressed in a few L/M cones, some rods and the retinal pigment epithelium. These results suggest that L/M cones, the predominant class of cone photoreceptors in the retinas of dogs and most mammalian species can be successfully targeted using the human red cone opsin promoter

    Optical Coherence Tomography Artifacts Are Associated With Adaptive Optics Scanning Light Ophthalmoscopy Success in Achromatopsia

    Get PDF
    Purpose: To determine whether artifacts in optical coherence tomography (OCT) images are associated with the success or failure of adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in subjects with achromatopsia (ACHM). / Methods: Previously acquired OCT and non-confocal, split-detector AOSLO images from one eye of 66 subjects with genetically confirmed achromatopsia (15 CNGA3 and 51 CNGB3) were reviewed along with best-corrected visual acuity (BCVA) and axial length. OCT artifacts in interpolated vertical volumes from CIRRUS macular cubes were divided into four categories: (1) none or minimal, (2) clear and low frequency, (3) low amplitude and high frequency, and (4) high amplitude and high frequency. Each vertical volume was assessed once by two observers. AOSLO success was defined as sufficient image quality in split-detector images at the fovea to assess cone quantity. / Results: There was excellent agreement between the two observers for assessing OCT artifact severity category (weighted kappa = 0.88). Overall, AOSLO success was 47%. For subjects with OCT artifact severity category 1, AOSLO success was 65%; for category 2, 47%; for category 3, 11%; and for category 4, 0%. There was a significant association between OCT artifact severity category and AOSLO success (P = 0.0002). Neither BCVA nor axial length was associated with AOSLO success (P = 0.07 and P = 0.75, respectively). / Conclusions: Artifacts in OCT volumes are associated with AOSLO success in ACHM. Subjects with less severe OCT artifacts are more likely to be good candidates for AOSLO imaging, whereas AOSLO was successful in only 7% of subjects with category 3 or 4 OCT artifacts. These results may be useful in guiding patient selection for AOSLO imaging. / Translational Relevance: Using OCT to prescreen patients could be a valuable tool for clinical trials that utilize AOSLO to reduce costs and decrease patient testing burden

    Parabolic stable surfaces with constant mean curvature

    Full text link
    We prove that if u is a bounded smooth function in the kernel of a nonnegative Schrodinger operator L=(Δ+q)-L=-(\Delta +q) on a parabolic Riemannian manifold M, then u is either identically zero or it has no zeros on M, and the linear space of such functions is 1-dimensional. We obtain consequences for orientable, complete stable surfaces with constant mean curvature HRH\in\mathbb{R} in homogeneous spaces E(κ,τ)\mathbb{E}(\kappa,\tau) with four dimensional isometry group. For instance, if M is an orientable, parabolic, complete immersed surface with constant mean curvature H in H2×R\mathbb{H}^2\times\mathbb{R}, then H1/2|H|\leq 1/2 and if equality holds, then M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange finite capacity by parabolicity, and simplify the proof of Theorem 1)
    corecore