38 research outputs found
Some aspects on the observation of the gravitomagnetic clock effect
http://arxiv.org/abs/gr-qc/0101089As a consequence of gravitomagnetism, which is a fundamental weak-field prediction of general relativity and ubiquitous in gravitational phenomena, clocks show a difference in their proper periods when moving along identical orbits in opposite directions about a spinning mass. This time shift is induced by the rotation of the source and may be used to verify the existence of the terrestrial gravitomagnetic field by means of orbiting clocks. A possible mission scenario is outlined with emphasis given to some of the major difficulties which inevitably arise in connection with such a venture
The Structure of Barium in the hcp Phase Under High Pressure
Recent experimental results on two hcp phases of barium under high pressure
show interesting variation of the lattice parameters. They are here interpreted
in terms of electronic structure calculation by using the LMTO method and
generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II
the dramatic drop in c/a is an instability analogous to that in the group II
metals but with the transfer of s to d electrons playing a crucial role in Ba.
Meanwhile in phase V, the instability decrease a lot due to the core repulsion
at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx,
71.15LaComment: 29 pages, 8 figure
Structure and Stability of an Amorphous Metal
Using molecular dynamics simulations, with a realistic many-body
embedded-atom potential, and a novel method to characterize local order, we
study the structure of pure nickel during the rapid quench of the liquid and in
the resulting glass. In contrast with previous simulations with pair
potentials, we find more crystalline order and fewer icosahedra for slower
quenching rates, resulting in a glass less stable against crystallization. It
is shown that there is not a specific amorphous structure, only the arrest of
the transition from liquid to crystal, resulting in small crystalline clusters
immersed in an amorphous matrix with the same structure of the liquid.Comment: 4 pages, 4 ps figs., to appear in Phys. Rev. Let
Structure and Dynamics of Liquid Iron under Earth's Core Conditions
First-principles molecular dynamics simulations based on density-functional
theory and the projector augmented wave (PAW) technique have been used to study
the structural and dynamical properties of liquid iron under Earth's core
conditions. As evidence for the accuracy of the techniques, we present PAW
results for a range of solid-state properties of low- and high-pressure iron,
and compare them with experimental values and the results of other
first-principles calculations. In the liquid-state simulations, we address
particular effort to the study of finite-size effects, Brillouin-zone sampling
and other sources of technical error. Results for the radial distribution
function, the diffusion coefficient and the shear viscosity are presented for a
wide range of thermodynamic states relevant to the Earth's core. Throughout
this range, liquid iron is a close-packed simple liquid with a diffusion
coefficient and viscosity similar to those of typical simple liquids under
ambient conditions.Comment: 13 pages, 8 figure
Structural study of an amorphous NiZr2 alloy by anomalous wide angle X-ray scattering and Reverse Monte Carlo simulations
The local atomic structure of an amorphous NiZr2 alloy was investigated using
the anomalous wide-angle x-ray scattering (AWAXS), differential anomalous
scattering (DAS) and reverse Monte Carlo (RMC) simulations techniques. The
AWAXS measurements were performed at eight different incident photon energies,
including some close to the Ni and Zr K edges. From the measurements eight
total structure factor S(K,E) were derived. Using the AWAXS data four
differential structure factors DSFi(K,Em,En) were derived, two about the Ni and
Zr edges. The partial structure factors SNi-Ni(K), SNi-Zr(K) and SZr-Zr(K) were
estimated by using two different methods. First, the S(K,E) and DSFi(K,Em,En)
factors were combined and used in a matrix inversion process. Second, three
S(K,E) factors were used as input data in the RMC technique. The coordination
numbers and interatomic distances for the first neighbors extracted from the
partial structure factors obtained by these two methods show a good agreement.
By using the three-dimensional structure derived from the RMC simulations, the
bond-angle distributions were calculated and they suggest the presence of
distorted triangular-faced polyhedral units in the amorphous NiZr2 structure.
We have used the Warren chemical short-range order parameter to evaluate the
chemical short-range order for the amorphous NiZr2 alloy and for the NiZr2
compound. The calculated values show that the chemical short-range order found
in these two materials is similar to that found in a solid solution.Comment: Submitted to Phys. Rev. B, 8 figure