239 research outputs found

    Sulfide quinone reductase (SQR) activity in Chlorobium

    Get PDF
    AbstractMembranes of the green sulfur bacterium, Chlorobium limicola f, thiosulfatophilum, catalyze the reduction of externally added isoprenoid quinones by sulfide. This activity is highly sensitive to stigmatellin and aurachins. It is also inhibited by 2-n-nonyl-4-hydroxyquinoline-N-oxide, antimycin, myxothiazol and cyanide. It is concluded that in sulfide oxidizing bacteria like Chlorobium, sulfide oxidation involves a sulfide-quinone reductase (SQR) similar to the one found in Oscilatoria limnetica [Arieli, B., Padan, E. and Shahak, Y. (1991) J. Biol. Chem. 266. 104–111]

    The chlorosome: a prototype for efficient light harvesting in photosynthesis

    Get PDF
    Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate

    Genotyping a second growth coast redwood forest : a high throughput methodology

    Get PDF
    The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna–Matthews–Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore–environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer

    A Map of Dielectric Heterogeneity in a Membrane Protein: the Hetero-Oligomeric Cytochrome b 6 f Complex

    Get PDF
    The cytochrome b6f complex, a member of the cytochrome bc family that mediates energy transduction in photosynthetic and respiratory membranes, is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane electron transfer, quinone oxidation–reduction, and generation of a proton electrochemical potential. Analysis of electron storage in this pathway, utilizing simultaneous measurement of heme reduction, and of circular dichroism (CD) spectra, to assay heme–heme interactions, implies a heterogeneous distribution of the dielectric constants that mediate electrostatic interactions between the four hemes in the complex. Crystallographic information was used to determine the identity of the interacting hemes. The Soret band CD signal is dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides of the complex. Kinetic data imply that the most probable pathway for transfer of the two electrons needed for quinone oxidation–reduction utilizes this intramonomer heme pair, contradicting the expectation based on heme redox potentials and thermodynamics, that the two higher potential hemes bn on different monomers would be preferentially reduced. Energetically preferred intramonomer electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric constants. Relative to the medium separating the two higher potential hemes bn, a relatively large dielectric constant must exist between the intramonomer b-hemes, allowing a smaller electrostatic repulsion between the reduced hemes. Heterogeneity of dielectric constants is an additional structure–function parameter of membrane protein complexes

    The bc 1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus

    Full text link
    Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochrome c oxidoreductase ( bc 1 complex). In both Rhodobacter sphaeroides and Rhodobacter capsulatus , the bc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because the bc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochrome b subunit, in the Rieske iron-sulfur subunit, and in the cytochrome c 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Q o ) site or the quinol reductase (Q i ) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44795/1/10863_2004_Article_BF00762582.pd

    Characterization of cytochrome b in the isolated ubiquinol-cytochrome c2 oxidoreductase from Rhodopseudomonas sphaeroides GA.

    No full text
    Extinction coefficients for cytochrome b and c1 in the isolated cytochrome bc1 complex from Rhodopseudomonas sphaeroides GA have been determined. They are 25 mM-1 . cm-1 at 561 nm for cytochrome b and 17.4 mM-1 . cm-1 at 553 nM for cytochrome c1, for the difference between the reduced and the oxidized state. Cytochrome b is present in two forms in the complex. One form has an Em7 of 50 mV, an alpha-peak of 557 nm at liquid N2 temperature and of 561 nm at RT, which is red-shifted by antimycin A. The other form has an Em7 of -90 mV, a double alpha-peak of 555 and 561 nm at liquid N2 temperature corresponding to 559 and 566 nm at RT. The absorption at 566 nm is red-shifted by myxothiazol. The two shifts are independent of each other. Both midpoint potentials of cytochromes b are pH-dependent. The redox center compositions of the cytochrome bc1 complexes from Rhodopseudomonas sphaeroides and from mitochondria are identical

    Cloning and expression of the fbc operon encoding the FeS protein, cytochrome b and cytochrome c1_1 from the Rhodopseudomonas sphaeroides b/c1_1 complex

    Get PDF
    The gene for the FeS protein of the Rhodopseudomonas sphaeroides b/c1 complex was identified by means of crosshybridization with a segment of the gene encoding the corresponding FeS protein of Neurospora crassa. Plasmids (pRSF1-14) containing the cross-hybridizing region, covering in total 13.5 kb of chromosomal DNA, were expressed in vitro in a homologous system. One RSF plasmid directed the synthesis of all three main polypeptides of the R. sphaeroides blc1 complex: the FeS protein, cytochrome b and cytochrome c1• The FeS protein and cytochrome c1 were apparently synthesized as precursor fonns. None of the pRSF plasmids directed the synthesis of the 10-kd polypeptide found in b/c1 complex preparations. Partial sequencing of the cloned region was performed. Several sites of strong homology between R. sphaeroides and eukaryotic polypeptides of the b/c1 complex were identified. The genes encode the three b/c1 polypeptides in the order: (5') FeS protein, cytochrome b, cytochrome c1• The three genes are transcribed to give a polycistronic mRNA of 2.9 kb. This transcriptional unit has been designated the jbc operon; its coding capacity corresponds to the size of the polycistronic mRNA assuming that only the genes for the FeS protein (jbcF), cytochrome b (jbcß) and cytochrome c1 (jbcC) are present. This could indicate that these three subunits constitute the minimal catalytic unit of the b/c1 complex from photosynthetic membranes
    corecore