373 research outputs found
Quantum diffusion on a cyclic one dimensional lattice
The quantum diffusion of a particle in an initially localized state on a
cyclic lattice with N sites is studied. Diffusion and reconstruction time are
calculated. Strong differences are found for even or odd number of sites and
the limit N->infinit is studied. The predictions of the model could be tested
with micro - and nanotechnology devices.Comment: 17 pages, 5 figure
High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators
The inherent coupling of optical and mechanical modes in high finesse optical
microresonators provide a natural, highly sensitive transduction mechanism for
micromechanical vibrations. Using homodyne and polarization spectroscopy
techniques, we achieve shot-noise limited displacement sensitivities of
10^(-19) m Hz^(-1/2). In an unprecedented manner, this enables the detection
and study of a variety of mechanical modes, which are identified as radial
breathing, flexural and torsional modes using 3-dimensional finite element
modelling. Furthermore, a broadband equivalent displacement noise is measured
and found to agree well with models for thermorefractive noise in silica
dielectric cavities. Implications for ground-state cooling, displacement
sensing and Kerr squeezing are discussed.Comment: 25 pages, 8 figure
Second Harmonic Generation for a Dilute Suspension of Coated Particles
We derive an expression for the effective second-harmonic coefficient of a
dilute suspension of coated spherical particles. It is assumed that the coating
material, but not the core or the host, has a nonlinear susceptibility for
second-harmonic generation (SHG). The resulting compact expression shows the
various factors affecting the effective SHG coefficient. The effective SHG per
unit volume of nonlinear coating material is found to be greatly enhanced at
certain frequencies, corresponding to the surface plasmon resonance of the
coated particles. Similar expression is also derived for a dilute suspension of
coated discs. For coating materials with third-harmonic (THG) coefficient,
results for the effective THG coefficients are given for the cases of coated
particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.
Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics
The effective nonlinear response of films of random composites consisting of
a binary composite with nonlinear particles randomly embedded in a linear host
is theoretically and numerically studied. A theoretical expression for the
effective second harmonic generation susceptibility, incorporating the
thickness of the film, is obtained by combining a modified effective-medium
approximation with the general expression for the effective second harmonic
generation susceptibility in a composite. The validity of the thoretical
results is tested against results obtained by numerical simulations on random
resistor networks. Numerical results are found to be well described by our
theory. The result implies that the effective-medium approximation provides a
convenient way for the estimation of the nonlinear response in films of random
dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.
Soliton Generation and Picosecond Collapse in Solid-State Lasers with Semiconductor Saturable Absorber
Based on self - consistent field theory we study a soliton generation in cw
solid-state lasers with semiconductor saturable absorber. Various soliton
destabilizations, i.e. the switch from femtosecond to picosecond generation
(''picosecond collapse''), an automodulation regime, breakdown of soliton
generation and hysteresis behavior, are predicted.Comment: 14 pages, 6 Postscript figures, Te
Production of squeezed state of single mode cavity field by the coupling of squeezed vacuum field reservoir in nonautonomous case
The dissipative and decoherence properties as well as the asymptotic behavior
of the single mode electromagnetic field interacting with the time-dependent
squeezed vacuum field reservoir are investigated in detail by using the
algebraic dynamical method. With the help of the left and right representations
of the relevant algebra, the dynamical symmetry of the nonautonomous
master equation of the system is found to be . The unique equilibrium
steady solution is found to be the squeezed state and any initial state of the
system is proved to approach the unique squeezed state asymptotically. Thus the
squeezed vacuum field reservoir is found to play the role of a squeezing mold
of the cavity field.Comment: 5 pages, no figure, Revtex
Automodulations in Kerr-lens Modelocked Solid-State Lasers
Nonstationary pulse regimes associated with self modulation of a Kerr-lens
modelocked Ti:sapphire laser have been studied experimentally and
theoretically. Such laser regimes occur at an intracavity group delay
dispersion that is smaller or larger than what is required for stable
modelocking and exhibit modulation in pulse amplitude and spectra at
frequencies of several hundred kHz. Stabilization of such modulations, leading
to an increase in the pulse peak power by a factor of ten, were accomplished by
weakly modulating the pump laser with the self-modulation frequency. The main
experimental observations can be explained with a round trip model of the fs
laser taking into account gain saturation, Kerr lensing, and second- and
third-order dispersion.Comment: 21 pages, 9 Postscript figures, TeX, the calculations are presented
on http://www.geocities.com/optomaple
Mode-Locking in Driven Disordered Systems as a Boundary-Value Problem
We study mode-locking in disordered media as a boundary-value problem.
Focusing on the simplest class of mode-locking models which consists of a
single driven overdamped degree-of-freedom, we develop an analytical method to
obtain the shape of the Arnol'd tongues in the regime of low ac-driving
amplitude or high ac-driving frequency. The method is exact for a scalloped
pinning potential and easily adapted to other pinning potentials. It is
complementary to the analysis based on the well-known Shapiro's argument that
holds in the perturbative regime of large driving amplitudes or low driving
frequency, where the effect of pinning is weak.Comment: 6 pages, 7 figures, RevTeX, Submitte
- …