924 research outputs found
Noise in Electron Devices
Contains a report on a research project.Lincoln Laboratory (Purchase Order DDL B-00368)United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-7400
Generation and manipulation of squeezed states of light in optical networks for quantum communication and computation
We analyze a fiber-optic component which could find multiple uses in novel
information-processing systems utilizing squeezed states of light. Our approach
is based on the phenomenon of photon-number squeezing of soliton noise after
the soliton has propagated through a nonlinear optical fiber. Applications of
this component in optical networks for quantum computation and quantum
cryptography are discussed.Comment: 12 pages, 2 figures; submitted to Journal of Optics
A Web-Oriented Multi-layer Model to Interact with Theatrical Performances
This paper presents an innovative approach to online fruition
of theater performances. Web applications like traditional viewers are
already available for the wide audience of Internet users. Our proposal
aims at adding both interactivity and multi-layer fruition, and a way
to manipulate and create new media. The premise to reach these goals
is digitizing a number of heterogeneous materials in order to describe a
single performance comprehensively, e.g. different video and audio-takes
from different perspectives, and a number of related materials such as
scripts, fashion plates, playbills, etc. The format we adopt to encode
such information is based on the XML international standard known
as IEEE 1599. Finally, an advanced Web player supporting search and
play functions for synchronized materials must be designed. This work
describes the whole process, from the acquisition of materials directly on
the stage to their publishing on a Web portal
Decoherence of Quantum-Enhanced Timing Accuracy
Quantum enhancement of optical pulse timing accuracy is investigated in the
Heisenberg picture. Effects of optical loss, group-velocity dispersion, and
Kerr nonlinearity on the position and momentum of an optical pulse are studied
via Heisenberg equations of motion. Using the developed formalism, the impact
of decoherence by optical loss on the use of adiabatic soliton control for
beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902
(2006)] is analyzed theoretically and numerically. The analysis shows that an
appreciable enhancement can be achieved using current technology, despite an
increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence
effect of optical loss on the transmission of quantum-enhanced timing
information is also studied, in order to identify situations in which the
enhancement is able to survive.Comment: 12 pages, 4 figures, submitte
Counterposition and negative phase velocity in uniformly moving dissipative materials
The Lorentz transformations of electric and magnetic fields were implemented
to study (i) the refraction of linearly polarized plane waves into a half-space
occupied by a uniformly moving material, and (ii) the traversal of linearly
polarized Gaussian beams through a uniformly moving slab. Motion was taken to
occur tangentially to the interface(s) and in the plane of incidence. The
moving materials were assumed to be isotropic, homogeneous, dissipative
dielectric materials from the perspective of a co-moving observer. Two
different moving materials were considered: from the perspective of a co-moving
observer, material A supports planewave propagation with only positive phase
velocity, whereas material B supports planewave propagation with both positive
and negative phase velocity, depending on the polarization state. For both
materials A and B, the sense of the phase velocity and whether or not
counterposition occurred, as perceived by a nonco-moving observer, could be
altered by varying the observer's velocity. Furthermore, the lateral position
of a beam upon propagating through a uniformly moving slab made of material A,
as perceived by a nonco-moving observer, could be controlled by varying the
observer's velocity. In particular, at certain velocities, the transmitted beam
emerged from the slab laterally displaced in the direction opposite to the
direction of incident beam. The transmittances of a uniformly moving slab made
of material B were very small and the energy density of the transmitted beam
was largely concentrated in the direction normal to the slab, regardless of the
observer's velocity
Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing
Achieving efficient terahertz (THz) generation using compact turn-key sources
operating at room temperature and modest power levels represents one of the
critical challeges that must be overcome to realize truly practical
applications based on THz. Up to now, the most efficient approaches to THz
generation at room temperature -- relying mainly on optical rectification
schemes -- require intricate phase-matching set-ups and powerful lasers. Here
we show how the unique light-confining properties of triply-resonant photonic
resonators can be tailored to enable dramatic enhancements of the conversion
efficiency of THz generation via nonlinear frequency down-conversion processes.
We predict that this approach can be used to reduce up to three orders of
magnitude the pump powers required to reach quantum-limited conversion
efficiency of THz generation in nonlinear optical material systems.
Furthermore, we propose a realistic design readily accesible experimentally,
both for fabrication and demonstration of optimal THz conversion efficiency at
sub-W power levels
Optics and Quantum Electronics
Contains reports on nine research projects split into two sections.National Science Foundation (Grant DAR80-08752)National Science Foundation (Grant ECS79-19475)Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS80-20639)National Science Foundation (Grant ECS82-11650
Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials
An ambichiral structure comprising sheets of an anisotropic dielectric
material rejects normally incident plane waves of one circular polarization
(CP) state but not of the other CP state, in its fundamental Bragg regime.
However, if the same structure is made of an dielectric--magnetic material with
indefinite permittivity and permeability dyadics, it may function as a
polarization--universal rejection filter because two of the four planewave
components of the electromagnetic field phasors in each sheet are of the
positive--phase--velocity type and two are of the negative--phase--velocity
type.Comment: Cleaned citations in the tex
Radius of a Photon Beam with Orbital Angular Momentum
We analyze the transverse structure of the Gouy phase shift in light beams
carrying orbital angular momentum and show that the Gouy radius
characterizing the transverse structure grows as with the
nodal number and photon angular momentum number . The Gouy radius is
shown to be closely related to the root-mean-square radius of the beam, and the
divergence of the radius away from the focal plane is determined. Finally, we
analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page
- …