924 research outputs found

    Noise in Electron Devices

    Get PDF
    Contains a report on a research project.Lincoln Laboratory (Purchase Order DDL B-00368)United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-7400

    Generation and manipulation of squeezed states of light in optical networks for quantum communication and computation

    Get PDF
    We analyze a fiber-optic component which could find multiple uses in novel information-processing systems utilizing squeezed states of light. Our approach is based on the phenomenon of photon-number squeezing of soliton noise after the soliton has propagated through a nonlinear optical fiber. Applications of this component in optical networks for quantum computation and quantum cryptography are discussed.Comment: 12 pages, 2 figures; submitted to Journal of Optics

    A Web-Oriented Multi-layer Model to Interact with Theatrical Performances

    Get PDF
    This paper presents an innovative approach to online fruition of theater performances. Web applications like traditional viewers are already available for the wide audience of Internet users. Our proposal aims at adding both interactivity and multi-layer fruition, and a way to manipulate and create new media. The premise to reach these goals is digitizing a number of heterogeneous materials in order to describe a single performance comprehensively, e.g. different video and audio-takes from different perspectives, and a number of related materials such as scripts, fashion plates, playbills, etc. The format we adopt to encode such information is based on the XML international standard known as IEEE 1599. Finally, an advanced Web player supporting search and play functions for synchronized materials must be designed. This work describes the whole process, from the acquisition of materials directly on the stage to their publishing on a Web portal

    Decoherence of Quantum-Enhanced Timing Accuracy

    Get PDF
    Quantum enhancement of optical pulse timing accuracy is investigated in the Heisenberg picture. Effects of optical loss, group-velocity dispersion, and Kerr nonlinearity on the position and momentum of an optical pulse are studied via Heisenberg equations of motion. Using the developed formalism, the impact of decoherence by optical loss on the use of adiabatic soliton control for beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902 (2006)] is analyzed theoretically and numerically. The analysis shows that an appreciable enhancement can be achieved using current technology, despite an increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence effect of optical loss on the transmission of quantum-enhanced timing information is also studied, in order to identify situations in which the enhancement is able to survive.Comment: 12 pages, 4 figures, submitte

    Counterposition and negative phase velocity in uniformly moving dissipative materials

    Full text link
    The Lorentz transformations of electric and magnetic fields were implemented to study (i) the refraction of linearly polarized plane waves into a half-space occupied by a uniformly moving material, and (ii) the traversal of linearly polarized Gaussian beams through a uniformly moving slab. Motion was taken to occur tangentially to the interface(s) and in the plane of incidence. The moving materials were assumed to be isotropic, homogeneous, dissipative dielectric materials from the perspective of a co-moving observer. Two different moving materials were considered: from the perspective of a co-moving observer, material A supports planewave propagation with only positive phase velocity, whereas material B supports planewave propagation with both positive and negative phase velocity, depending on the polarization state. For both materials A and B, the sense of the phase velocity and whether or not counterposition occurred, as perceived by a nonco-moving observer, could be altered by varying the observer's velocity. Furthermore, the lateral position of a beam upon propagating through a uniformly moving slab made of material A, as perceived by a nonco-moving observer, could be controlled by varying the observer's velocity. In particular, at certain velocities, the transmitted beam emerged from the slab laterally displaced in the direction opposite to the direction of incident beam. The transmittances of a uniformly moving slab made of material B were very small and the energy density of the transmitted beam was largely concentrated in the direction normal to the slab, regardless of the observer's velocity

    Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing

    Full text link
    Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. Up to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels

    Optics and Quantum Electronics

    Get PDF
    Contains reports on nine research projects split into two sections.National Science Foundation (Grant DAR80-08752)National Science Foundation (Grant ECS79-19475)Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS80-20639)National Science Foundation (Grant ECS82-11650

    Tube Research and Development

    Get PDF
    Contains reports on five research projects

    Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials

    Full text link
    An ambichiral structure comprising sheets of an anisotropic dielectric material rejects normally incident plane waves of one circular polarization (CP) state but not of the other CP state, in its fundamental Bragg regime. However, if the same structure is made of an dielectric--magnetic material with indefinite permittivity and permeability dyadics, it may function as a polarization--universal rejection filter because two of the four planewave components of the electromagnetic field phasors in each sheet are of the positive--phase--velocity type and two are of the negative--phase--velocity type.Comment: Cleaned citations in the tex

    Radius of a Photon Beam with Orbital Angular Momentum

    Full text link
    We analyze the transverse structure of the Gouy phase shift in light beams carrying orbital angular momentum and show that the Gouy radius rGr_G characterizing the transverse structure grows as 2p++1\sqrt{2p+|\ell|+1} with the nodal number pp and photon angular momentum number \ell. The Gouy radius is shown to be closely related to the root-mean-square radius of the beam, and the divergence of the radius away from the focal plane is determined. Finally, we analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page
    corecore