27 research outputs found

    Single-Batch Production of Recombinant Human Polyclonal Antibodies

    Get PDF
    We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the SympressTM I technology. The SympressTM I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the SympressTM I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the SympressTM II technology. Here we describe proof-of-principle data demonstrating the feasibility of the SympressTM II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase

    Inflammation-Associated Nitrotyrosination Affects TCR Recognition through Reduced Stability and Alteration of the Molecular Surface of the MHC Complex

    Get PDF
    Nitrotyrosination of proteins, a hallmark of inflammation, may result in the production of MHC-restricted neoantigens that can be recognized by T cells and bypass the constraints of immunological self-tolerance. Here we biochemically and structurally assessed how nitrotyrosination of the lymphocytic choriomeningitis virus (LCMV)-associated immunodominant MHC class I-restricted epitopes gp33 and gp34 alters T cell recognition in the context of both H-2Db and H-2Kb. Comparative analysis of the crystal structures of H-2Kb/gp34 and H-2Kb/NY-gp34 demonstrated that nitrotyrosination of p3Y in gp34 abrogates a hydrogen bond interaction formed with the H-2Kb residue E152. As a consequence the conformation of the TCR-interacting E152 was profoundly altered in H-2Kb/NY-gp34 when compared to H-2Kb/gp34, thereby modifying the surface of the nitrotyrosinated MHC complex. Furthermore, nitrotyrosination of gp34 resulted in structural over-packing, straining the overall conformation and considerably reducing the stability of the H-2Kb/NY-gp34 MHC complex when compared to H-2Kb/gp34. Our structural analysis also indicates that nitrotyrosination of the main TCR-interacting residue p4Y in gp33 abrogates recognition of H-2Db/gp33-NY complexes by H-2Db/gp33-specific T cells through sterical hindrance. In conclusion, this study provides the first structural and biochemical evidence for how MHC class I-restricted nitrotyrosinated neoantigens may enable viral escape and break immune tolerance

    SP-A binds alpha(1)-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase

    Get PDF
    BACKGROUND: α1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins. With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. METHODS AND RESULTS: At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin. CONCLUSION: We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents

    Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules.

    No full text
    The Philadelphia (Ph) chromosome, resulting from the t(9;22) translocation, is characteristic of chronic myeloid leukemia (CML). As a result of this translocation, two novel chimeric genes are generated and the bcr/abl and abl/bcr fusion proteins expressed. The bcr/abl fusion mRNA is present in all CML patients, whereas the reciprocal abl/bcr fusion mRNA is detectable in about 80% of the Ph+ CML patients. These fusion proteins may undergo enzymatic degradation in the cytosol and give rise to MHC class I restricted peptide epitopes originating from the junctional regions of the translocation products, which thus may serve as novel tumor specific antigens. Previously, other groups have tested peptides corresponding to the junctional region of the bcr/abl protein for their binding capacity to HLA class I molecules and have identified a few candidate epitopes. Peptides originating from the abl/bcr fusion protein have on the other hand so far been neglected, for no apparent reason. We have now extended these studies to include also the reciprocal abl/bcr translocation product by testing a large panel of synthetic peptides corresponding to the junctional regions of both the abl/bcr and the bcr/abl fusion proteins for their ability to stabilize HLA class I molecules. We find that the abl/bcr translocation product may be an even more important source of CML specific peptide antigens and together the junctional sequences of both these proteins contain peptide sequences which bind efficiently to a number of HLA molecules (HLA-A1, -A2, -A3, -A11, -B7, -B27, -B35) and thus may serve as candidate CML specific tumor antigens

    Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes.

    No full text
    Cytotoxic T cells (CTL) recognize short peptide epitopes presented by class I glycoproteins encoded by the major histocompatibility complex (MHC). It is not yet known whether peptides containing posttranslationally modified amino acids can also be recognized by CTL. To address this issue, we have studied the immunogenicity and recognition of a glycopeptide carrying an O-linked N-acetylglucosamine (GlcNAc) monosaccharide-substituted serine residue. This posttranslational modification is catalyzed by a recently described cytosolic glycosyltransferase. We show that glycosylation does not affect peptide binding to MHC class I and that glycopeptides can elicit a strong CTL response that is glycopeptide specific. Furthermore, glycopeptide recognition by cytotoxic T cells is dependent on the chemical structure of the glycan as well as its position within the peptide

    Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition.

    No full text
    This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule

    Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity.

    Get PDF
    Two synthetic O-GlcNAc-bearing peptides that elicit H-2Db-restricted glycopeptide-specific cytotoxic T cells (CTL) have been shown to display nonreciprocal patterns of cross-reactivity. Here, we present the crystal structures of the H-2Db glycopeptide complexes to 2.85 A resolution or better. In both cases, the glycan is solvent exposed and available for direct recognition by the T cell receptor (TCR). We have modeled the complex formed between the MHC-glycopeptide complexes and their respective TCRs, showing that a single saccharide residue can be accommodated in the standard TCR-MHC geometry. The models also reveal a possible molecular basis for the observed cross-reactivity patterns of the CTL clones, which appear to be influenced by the length of the CDR3 loop and the nature of the immunizing ligand
    corecore