94 research outputs found
Plasticity in the structure of visual space
Visual space embodies all visual experiences, yet what determines the topographical structure of visual space remains unclear. Here we test a novel theoretical framework that proposes intrinsic lateral connections in the visual cortex as the mechanism underlying the structure of visual space. The framework suggests that the strength of lateral connections between neurons in the visual cortex shapes the experience of spatial relatedness between locations in the visual field. As such, an increase in lateral connection strength shall lead to an increase in perceived relatedness and a contraction in perceived distance. To test this framework through human psychophysics experiments, we used a Hebbian training protocol in which two-point stimuli were flashed in synchrony at separate locations in the visual field, to strengthen the lateral connections between two separate groups of neurons in the visual cortex. After training, participants experienced a contraction in perceived distance. Intriguingly, the perceptual contraction occurred not only between the two training locations that were linked directly by the changed connections, but also between the outward untrained locations that were linked indirectly through the changed connections. Moreover, the effect of training greatly decreased if the two training locations were too close together or too far apart and went beyond the extent of lateral connections. These findings suggest that a local change in the strength of lateral connections is sufficient to alter the topographical structure of visual spac
The horizontal effect in suppression: Anisotropic overlay and surround suppression at high and low speeds
AbstractWhen a pattern of broad spatial content is viewed by an observer, the multiple spatial components in the pattern stimulate detecting-mechanisms that suppress each other. This suppression is anisotropic, being relatively greater at horizontal, and least at obliques (the “horizontal effect”). Here, suppression of a grating by a naturalistic (1/f) broadband mask is shown to be larger when the broadband masks are temporally similar to the target’s temporal properties, and generally anisotropic, with the anisotropy present across all spatio-temporal parings tested. We also show that both suppression from within the region of the test pattern (overlay suppression) and from outside of this region (surround suppression) show the horizontal-effect anisotropy. We conclude that these suppression effects stem from locally-tuned and anisotropically-weighted gain-control pools
Geometry of Information Integration
Information geometry is used to quantify the amount of information
integration within multiple terminals of a causal dynamical system. Integrated
information quantifies how much information is lost when a system is split into
parts and information transmission between the parts is removed. Multiple
measures have been proposed as a measure of integrated information. Here, we
analyze four of the previously proposed measures and elucidate their relations
from a viewpoint of information geometry. Two of them use dually flat manifolds
and the other two use curved manifolds to define a split model. We show that
there are hierarchical structures among the measures. We provide explicit
expressions of these measures
An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes
Broadband oriented-noise masks were used to assess the orientation properties of spatial-context suppression in 'general' viewing conditions (i.e., a fixated, large field of 'naturalistic' noise). Suppression was orientation-tuned with a Gaussian shape and bandwidth of 40-that was consistent across test orientation (0-, 45-, 90-, and 135-). Strength of suppression was highly anisotropic following a "horizontal effect" pattern (strongest suppression at horizontal and least suppression at oblique test orientations). Next, the time course of anisotropic masking was investigated by varying stimulus onset asynchrony (SOA). A standard "oblique effect" anisotropy is observed at long SOAs but becomes a "horizontal effect" when a noise mask is present within approximately 50 ms of the test onset. The orientation-tuned masking appears to result from an anisotropic gain-control mechanism that pools the weighted responses to the broadband mask, resulting in a changeover from oblique effect to horizontal effect. In addition, the relative magnitude of suppression at the orientations tested corresponds to the relative magnitudes of the content of typical natural scenes at the same orientations. We suggest that this anisotropic suppression may serve to equalize the visual system's response across orientation when viewing typical natural scenes, 'discounting' the anisotropy of typical natural scene content
Conscious Perception as Integrated Information Patterns in Human Electrocorticography
A significant problem in neuroscience concerns the distinction between neural processing that is correlated with conscious percepts from processing that is not. Here, we tested if a hierarchical structure of causal interactions between neuronal populations correlates with conscious perception. We derived the hierarchical causal structure as a pattern of integrated information, inspired by the integrated information theory (IIT) of consciousness. We computed integrated information patterns from intracranial electrocorticography (ECoG) from six human neurosurgical patients with electrodes implanted over lateral and ventral cortices. During recording, subjects viewed continuous flash suppression (CFS) and backward masking (BM) stimuli intended to dissociate conscious percept from stimulus, and unmasked suprathreshold stimuli. Object-sensitive areas revealed correspondence between conscious percepts and integrated information patterns. We quantified this correspondence using unsupervised classification methods that revealed clustering of visual experiences with integrated information, but not with broader information measures including mutual information and entropy. Our findings point to a significant role of locally integrated information for understanding the neural substrate of conscious object perception
A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement
Skeletal muscle is highly adaptable and has consistently been shown to morphologically respond to exercise training. Skeletal muscle growth during periods of resistance training has traditionally been referred to as skeletal muscle hypertrophy, and this manifests as increases in muscle mass, muscle thickness, muscle area, muscle volume, and muscle fiber cross-sectional area (fCSA). Delicate electron microscopy and biochemical techniques have also been used to demonstrate that resistance exercise promotes ultrastructural adaptations within muscle fibers. Decades of research in this area of exercise physiology have promulgated a widespread hypothetical model of training-induced skeletal muscle hypertrophy; specifically, fCSA increases are accompanied by proportional increases in myofibrillar protein, leading to an expansion in the number of sarcomeres in parallel and/or an increase in myofibril number. However, there is ample evidence to suggest that myofibrillar protein concentration may be diluted through sarcoplasmic expansion as fCSA increases occur. Furthermore, and perhaps more problematic, are numerous investigations reporting that pre-to-post training change scores in macroscopic, microscopic, and molecular variables supporting this model are often poorly associated with one another. The current review first provides a brief description of skeletal muscle composition and structure. We then provide a historical overview of muscle hypertrophy assessment. Next, current-day methods commonly used to assess skeletal muscle hypertrophy at the biochemical, ultramicroscopic, microscopic, macroscopic, and whole-body levels in response to training are examined. Data from our laboratory, and others, demonstrating correlations (or the lack thereof) between these variables are also presented, and reasons for comparative discrepancies are discussed with particular attention directed to studies reporting ultrastructural and muscle protein concentration alterations. Finally, we critically evaluate the biological construct of skeletal muscle hypertrophy, propose potential operational definitions, and provide suggestions for consideration in hopes of guiding future research in this area
A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement
Skeletal muscle is highly adaptable and has consistently been shown to morphologically respond to exercise training. Skeletal muscle growth during periods of resistance training has traditionally been referred to as skeletal muscle hypertrophy, and this manifests as increases in muscle mass, muscle thickness, muscle area, muscle volume, and muscle fiber cross-sectional area (fCSA). Delicate electron microscopy and biochemical techniques have also been used to demonstrate that resistance exercise promotes ultrastructural adaptations within muscle fibers. Decades of research in this area of exercise physiology have promulgated a widespread hypothetical model of training-induced skeletal muscle hypertrophy; specifically, fCSA increases are accompanied by proportional increases in myofibrillar protein, leading to an expansion in the number of sarcomeres in parallel and/or an increase in myofibril number. However, there is ample evidence to suggest that myofibrillar protein concentration may be diluted through sarcoplasmic expansion as fCSA increases occur. Furthermore, and perhaps more problematic, are numerous investigations reporting that pre-to-post training change scores in macroscopic, microscopic, and molecular variables supporting this model are often poorly associated with one another. The current review first provides a brief description of skeletal muscle composition and structure. We then provide a historical overview of muscle hypertrophy assessment. Next, current-day methods commonly used to assess skeletal muscle hypertrophy at the biochemical, ultramicroscopic, microscopic, macroscopic, and whole-body levels in response to training are examined. Data from our laboratory, and others, demonstrating correlations (or the lack thereof) between these variables are also presented, and reasons for comparative discrepancies are discussed with particular attention directed to studies reporting ultrastructural and muscle protein concentration alterations. Finally, we critically evaluate the biological construct of skeletal muscle hypertrophy, propose potential operational definitions, and provide suggestions for consideration in hopes of guiding future research in this area
Conscious Perception as Integrated Information Patterns in Human Electrocorticography
A significant problem in neuroscience concerns the distinction between neural processing that is correlated with conscious percepts from processing that is not. Here, we tested if a hierarchical structure of causal interactions between neuronal populations correlates with conscious perception. We derived the hierarchical causal structure as a pattern of integrated information, inspired by the integrated information theory (IIT) of consciousness. We computed integrated information patterns from intracranial electrocorticography (ECoG) from six human neurosurgical patients with electrodes implanted over lateral and ventral cortices. During recording, subjects viewed continuous flash suppression (CFS) and backward masking (BM) stimuli intended to dissociate conscious percept from stimulus, and unmasked suprathreshold stimuli. Object-sensitive areas revealed correspondence between conscious percepts and integrated information patterns. We quantified this correspondence using unsupervised classification methods that revealed clustering of visual experiences with integrated information, but not with broader information measures including mutual information and entropy. Our findings point to a significant role of locally integrated information for understanding the neural substrate of conscious object perception
A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots
- …