33 research outputs found

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Locally Administrated Perindopril Improves Healing in an Ovariectomized Rat Tibial Osteotomy Model

    Get PDF
    Angiotensin-converting enzyme inhibitors are widely prescribed to regulate blood pressure. High doses of orally administered perindopril have previously been shown to improve fracture healing in a mouse femur fracture model. In this study, perindopril was administered directly to the fracture area with the goal of stimulating fracture repair. Three months after being ovariectomized (OVX), tibial fractures were produced in Sprague–Dawley rats and subsequently stabilized with intramedullary wires. Perindopril (0.4 mg/kg/day) was injected locally at the fractured site for a treatment period of 7 days. Vehicle reagent was used as a control. Callus quality was evaluated at 2 and 4 weeks post-fracture. Compared with the vehicle group, perindopril treatment significantly increased bone formation, increased biomechanical strength, and improved microstructural parameters of the callus. Newly woven bone was arranged more tightly and regularly at 4 weeks post-fracture. The ultimate load increased by 66.1 and 76.9% (p<0.01), and the bone volume over total volume (BV/TV) increased by 29.9% and 24.3% (p<0.01) at 2 and 4 weeks post-fracture, respectively. These findings suggest that local treatment with perindopril could promote fracture healing in ovariectomized rats

    Low Levels of Plasma Agmatine in the Metabolic Syndrome

    No full text

    Angiotensin-(1-7) enhances anti-aggregatory effects of the nitric oxide donor sodium nitroprusside

    No full text
    Patients with ischemic heart disease have platelets that are resistant to the anti-aggregatory effects of nitric oxide (NO) donors. This NO resistance is associated with increased whole blood superoxide radical (O2βˆ’) content. Angiotensin II (Ang II) has been shown to augment O2βˆ’ formation. Recent studies have demonstrated that angiotensin-(1-7) [Ang-(1-7)] has opposite actions to those of Ang II in the vasculature. This study compares the effects of Ang-(1-7) and Ang II on platelet aggregation and platelet responsiveness to the NO donor sodium nitroprusside (SNP). Platelet aggregation was induced by the thromboxane A2 mimetic U46619 (1-5 ΞΌmol/L), and the inhibitory effects of SNP (10 ΞΌmol/L) on the rate and extent of aggregation were quantified. Ang II did not induce aggregation, but 10-100 nmol/L Ang II potentiated U46619-induced aggregation by 21 Β± 6% in the absence and by 26 Β± 9% in the presence of SNP (P < 0.01 for both), in blood samples from 8 normal subjects. By contrast, Ang-(1-7) alone did not affect platelet aggregation, but 10-100 nmol/L Ang-(1-7) potentiated the anti-aggregatory effects of SNP in blood samples from both normal subjects (n = 17) and patients with acute coronary syndromes (n = 17). This effect of Ang-(1-7) was bimodal, and at higher concentrations of Ang-(1-7), potentiation was abolished. The maximum incremental effects of Ang-(1-7) on inhibition of aggregation were 25 Β± 4% and 28 Β± 5%, for rate and extent of aggregation respectively (P < 0.01 for both), corresponding to a 2.3-fold potentiation of the anti-aggregatory effect of SNP. Platelets from patients were resistant to the anti-aggregatory effect of SNP, but potentiation of SNP effects by Ang-(1-7) was similar for patients and normal subjects. Thus, Ang-(1-7) potentiates the anti-aggregatory effects of NO donor, and may therefore counteract platelet NO resistance that accompanies cardiovascular disease.Sharmalar Rajendran, Yuliy Y. Chirkov, Duncan J. Campbell, and John D. Horowit
    corecore