7 research outputs found
Superconductivity in Ce- and U-based "122" heavy-fermion compounds
This review discusses the heavy-fermion superconductivity in Ce- and U-based
compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure.
Special attention will be paid to the theoretical background of these systems
which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent
Developments in Superconductivity") Metadata and references update
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor
We report inelastic neutron scattering experiments on single crystals of
superconducting Ba0.67K0.33Fe2As2 (Tc = 38 K). In addition to confirming the
resonance previously found in powder samples, we find that spin excitations in
the normal state form longitudinally elongated ellipses along the QAFM
direction in momentum space, consistent with density functional theory
predictions. On cooling below Tc, while the resonance preserves its momentum
anisotropy as expected, spin excitations at energies below the resonance become
essentially isotropic in the in-plane momentum space and dramatically increase
their correlation length. These results suggest that the superconducting gap
structures in Ba0.67Ka0.33Fe2As2 are more complicated than those suggested from
angle resolved photoemission experiments
Electrodynamics of Correlated Electron Materials
We review studies of the electromagnetic response of various classes of
correlated electron materials including transition metal oxides, organic and
molecular conductors, intermetallic compounds with - and -electrons as
well as magnetic semiconductors. Optical inquiry into correlations in all these
diverse systems is enabled by experimental access to the fundamental
characteristics of an ensemble of electrons including their self-energy and
kinetic energy. Steady-state spectroscopy carried out over a broad range of
frequencies from microwaves to UV light and fast optics time-resolved
techniques provide complimentary prospectives on correlations. Because the
theoretical understanding of strong correlations is still evolving, the review
is focused on the analysis of the universal trends that are emerging out of a
large body of experimental data augmented where possible with insights from
numerical studies.Comment: 78 pages, 55 figures, 984 reference
Factors associated with flea infestation among the different rodent species in Mbulu and Karatu districts, northern Tanzania
Flea infection with the bacterium, Yersinia pestis is acquired from reservoirs which include several rodents and other small mammals. In areas that are endemic of plague, reservoirs of Y. pestis and various flea vectors are responsible for perpetuating existence of the disease. The objective of this cross sectional study was to investigate the magnitude and factors associated with flea infestation among different rodent species of northern Tanzania, where outbreaks of plague have been recently reported. House rodents were trapped with box traps, while field and forest rodents were trapped with Sherman live traps. Fleas were removed from the rodents by using shoe-shining brush and were identified to genus level. Among the captured rodents, Rattus rattus (26.5%), Lophuromys flavopunctatus (16.5%), Praomys delectorum (16.2%) and Mastomys natalensis (32.3%) were most abundant rodent species, accounting for 91% of all species. Altogether, 805 fleas belonging to nine species were collected from 61% of the captured rodents. The most common fleas were Xenopsylla spp.; Dinopsyllus spp and Ctenophthalmus spp. Fleas were found to be highly abundant in M. natalensis, R. rattus, P. delectorum and L. flavopunctatus. Most of rodents were heavily infested with various flea species. These flea species probably play an important role in the transmission of plague in these two districts. We conclude that rodent species was the most important risk factor associating with flea infestation among the rodent population. Therefore, measures for control and prevention of plague in this area should particularly target rodents associated with high intensity of flea infestation