2 research outputs found
Influence of filter age on Fe, Mn and NH4+ removal in dual media rapid sand filters used for drinking water production
Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH4+) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH4+ removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters ( 1 m). Removal of NH4+ occurs through nitrification in both the anthracite and sand and is the key driver of oxygen loss. Removal of Fe is independent of filter age and is always efficient (> 97% removal). In contrast, for Mn, the removal efficiency varies with filter age, ranging from 9 to 28% at ∼2–3 months after filter replacement to 100% after 8 months. After 11 years, removal reduces to 60–80%. The lack of Mn removal in the youngest filters (at 2–3 months) is likely the result of a relatively low abundance of mineral coatings that adsorb Mn2+ and provide surfaces for the establishment of a microbial community. 16S rRNA gene amplicon sequencing shows that Gallionella, which are known Fe2+ oxidizers, are present after 2 months, yet Fe2+ removal is mostly chemical. Efficient NH4+ removal (> 90%) establishes within 3 months of operation but leakage occurs upon high NH4+loading (> 160 µM). Two-step nitrification by Nitrosomonas and Candidatus Nitrotoga is likely the most important NH4+ removal mechanism in younger filters during ripening (2 months), after which complete ammonia oxidation by Nitrospira and canonical two-step nitrification occur simultaneously in older filters. Our results highlight the strong effect of filter age on especially Mn2+but also NH4+ removal. We show that ageing of filter medium leads to the development of thick coatings, which we hypothesize leads to preferential flow, and breakthrough of Mn2+. Use of age-specific flow rates may increase the contact time with the filter medium in older filters and improve Mn2+ and NH4+ removal
Efficient chemical and microbial removal of iron and manganese in a rapid sand filter and impact of regular backwash
Aeration followed by rapid sand filtration is a common method in drinking water treatment to remove iron (Fe) and manganese (Mn) from anoxic groundwater. To ensure the successful removal of Fe and Mn within a single filter, several factors such as raw water characteristics, backwash procedures and chemical and microbial interactions with the filter medium need to be considered. Here, we assess the characteristics of a single medium rapid sand filter with highly efficient removal of Fe and Mn. Using synchrotron X-ray spectroscopy, we show that formation of ferrihydrite-type Fe oxides in the top of the filter (0–50 cm) accounts for >95 % of the removal of dissolved Fe2+ in the filter. Birnessite-type Mn- oxides, which are thought to be biogenic, form over a wider depth interval (0–110 cm). Results of 16S rRNA gene amplicon sequencing indicate a corresponding distinct vertical stratification of the microbial community, with potential iron-oxidizing Gallionella, Leptothrix and Sideroxydans dominating in the upper part of the filter, and nitrifiers being more prevalent deeper in the filter. Besides Fe and Mn-oxide, Fe-flocs and bacteriological hollow sheets form in the upper part of the filter. Both the Fe-flocs, hollow Fe-sheets and part of the Fe and Mn coatings are removed through backwashing, thereby reducing the pressure difference measured over the filter medium linked to clogging of pores (from 14 kPa to 1.5 kPa) and ensuring continued water flow. Backwashing removes part of the Gallionella, but this does not negatively impact the filter performance. Strikingly, SEM imaging with EDS mapping revealed alternating layers of Fe and Mn-oxides on the coated grains throughout the filter. This indicates slow mixing of the filter medium between the upper 30 cm and the rest of the filter during backwashing. Slow mixing likely contributes to continued success of the filter by ensuring homogeneous filter bed growth, while still allowing for stratification of the microbial community