1 research outputs found

    Netrin-3 Signals Through Serine Phosphorylation in Tetrahymena thermophila

    Get PDF
    The netrin family of proteins are structurally related to laminin and, while first discovered in the nematode Caenorhabditis elegans, are now known to be present in species throughout the animal kingdom, including humans. These proteins also have a wide variety of roles that include inhibition of apoptosis, chemorepulsion, and axonal guidance. Due to the results of previous studies involving netrin-1 in vertebrate systems, the current prevailing assumption is that netrins, when acting as chemorepellents, signal using tyrosine kinases. However, data that we gathered through phosphoserine-targeting ELISA assays and immunofluorescence microscopy demonstrates that the netrin-3 peptides signal Tetrahymena thermophila through serine phosphorylation instead, causing the ciliate protists to avoid netrin-3 peptides in response. Treatment with netrin-3 peptides also seems to cause mitotic inhibition in Tetrahymena, which can be reversed by addition of a serine kinase inhibitor. This new information suggests that netrin-3 may have physiological roles that have previously been unexplored
    corecore