703 research outputs found
Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity
We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can
be understood in the framework of the metric-affine (gauge theory of) gravity
(MAG). We achieve this by relating the aether vector field of J&M to certain
post-Riemannian nonmetricity pieces contained in an independent linear
connection of spacetime. Then, for the aether, a corresponding geometrical
curvature-square Lagrangian with a massive piece can be formulated
straightforwardly. We find an exact spherically symmetric solution of our
model.Comment: Revtex4, 38 pages, 1 figur
Lorentz violating electrodynamics
After summarizing the most interesting results in the calculation of
synchrotron radiation in the Myers-Pospelov effective model for Lorentz
invariance violating (LIV) electrodynamics, we present a general unified way of
describing the radiation regime of LIV electrodynamics which include the
following three different models : Gambini-Pullin, Ellis et al. and
Myers-Pospelov. Such unification reduces to the standard approach of radiation
in a dispersive and absortive (in general) medium with a given index of
refraction. The formulation is presented up to second order in the LIV
parameter and it is explicitly applied to the synchrotron radiation case.Comment: 11 pages, extended version of the talk given by L.F. Urrutia in the
VI Mexican School: Approaches to Quantum Gravity, Playa del Carmen, Mexico,
Nov. 2004. Minor chages in the text and added reference
Wave propagation in linear electrodynamics
The Fresnel equation governing the propagation of electromagnetic waves for
the most general linear constitutive law is derived. The wave normals are found
to lie, in general, on a fourth order surface. When the constitutive
coefficients satisfy the so-called reciprocity or closure relation, one can
define a duality operator on the space of the two-forms. We prove that the
closure relation is a sufficient condition for the reduction of the fourth
order surface to the familiar second order light cone structure. We finally
study whether this condition is also necessary.Comment: 13 pages. Phys. Rev. D, to appea
Quantum Physics and Human Language
Human languages employ constructions that tacitly assume specific properties
of the limited range of phenomena they evolved to describe. These assumed
properties are true features of that limited context, but may not be general or
precise properties of all the physical situations allowed by fundamental
physics. In brief, human languages contain `excess baggage' that must be
qualified, discarded, or otherwise reformed to give a clear account in the
context of fundamental physics of even the everyday phenomena that the
languages evolved to describe. The surest route to clarity is to express the
constructions of human languages in the language of fundamental physical
theory, not the other way around. These ideas are illustrated by an analysis of
the verb `to happen' and the word `reality' in special relativity and the
modern quantum mechanics of closed systems.Comment: Contribution to the festschrift for G.C. Ghirardi on his 70th
Birthday, minor correction
The Equivalence Principle in the Non-baryonic Regime
We consider the empirical validity of the equivalence principle for
non-baryonic matter. Working in the context of the TH\epsilon\mu formalism, we
evaluate the constraints experiments place on parameters associated with
violation of the equivalence principle (EVPs) over as wide a sector of the
standard model as possible. Specific examples include new parameter constraints
which arise from torsion balance experiments, gravitational red shift,
variation of the fine structure constant, time-dilation measurements, and
matter/antimatter experiments. We find several new bounds on EVPs in the
leptonic and kaon sectors.Comment: 22 pages, late
Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity
Observations of pulsar timing provide strong constraints on scalar-tensor
theories of gravity, but these constraints are traditionally quoted as limits
on the microscopic parameters (like the Brans-Dicke coupling, for example) that
govern the strength of scalar-matter couplings at the particle level in
particular models. Here we present fits to timing data for several pulsars
directly in terms of the phenomenological couplings (masses, scalar charges,
moment of inertia sensitivities and so on) of the stars involved, rather than
to the more microscopic parameters of a specific model. For instance, for the
double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the
masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25,
while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and
|a_B - a_A| < 0.002$. These constraints are independent of the details of the
scalar tensor model involved, and of assumptions about the stellar equations of
state. Our fits can be used to constrain a broad class of scalar tensor
theories by computing the fit quantities as functions of the microscopic
parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke
models, the constraints obtained in this manner are consistent with those
quoted in the literature.Comment: 19 pages, 7 figure
Quasilocal Thermodynamics of Dilaton Gravity coupled to Gauge Fields
We consider an Einstein-Hilbert-Dilaton action for gravity coupled to various
types of Abelian and non-Abelian gauge fields in a spatially finite system.
These include Yang-Mills fields and Abelian gauge fields with three and
four-form field strengths. We obtain various quasilocal quantities associated
with these fields, including their energy and angular momentum, and develop
methods for calculating conserved charges when a solution possesses sufficient
symmetry. For stationary black holes, we find an expression for the entropy
from the micro-canonical form of the action. We also find a form of the first
law of black hole thermodynamics for black holes with the gauge fields of the
type considered here.Comment: 41 pages, latex, uses fonts provided by AMSTe
Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle
It is shown that the gravitational ultrarelativistic spin-orbit interaction
violates the weak equivalence principle in the traditional sense. This fact is
a direct consequence of the Mathisson-Papapetrou equations in the frame of
reference comoving with a spinning test particle. The widely held assumption
that the deviation of a spinning test body from a geodesic trajectory is caused
by tidal forces is not correctComment: 12 page
Dirac theory within the Standard-Model Extension
The modified Dirac equation in the Lorentz-violating Standard-Model Extension
(SME) is considered. Within this framework, the construction of a hermitian
Hamiltonian to all orders in the Lorentz-breaking parameters is investigated,
discrete symmetries and the first-order roots of the dispersion relation are
determined, and various properties of the eigenspinors are discussed.Comment: 11 pages REVTe
Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3
There are numerous potential applications for superconducting tapes, based on
YBa2Cu3O7-x (YBCO) films coated onto metallic substrates. A long established
goal of more than 15 years has been to understand the magnetic flux pinning
mechanisms which allow films to maintain high current densities out to high
magnetic fields. In fact, films carry 1-2 orders of magnitude higher current
densities than any other form of the material. For this reason, the idea of
further improving pinning has received little attention. Now that
commercialisation of conductors is much closer, for both better performance and
lower fabrication costs, an important goal is to achieve enhanced pinning in a
practical way. In this work, we demonstrate a simple and industrially scaleable
route which yields a 1.5 to 5-fold improvement in the in-field current
densities of already-high-quality conductors
- …