405 research outputs found
Measuring atmospheric dispersion with WLRS in multiple wavelength mode
The WLRS (Wettzell Laser Ranging System) allows the simultaneous tracking of satellites on two different wavelengths. These are the fundamental frequency of Nd:YAG at 1.064 microns and the second harmonic at 532 nm. Range measurements to the satellite LAGEOS were carried out with different experimental set-ups, after developing a detector unit based on a silicon avalanche photodiode in Geiger mode, which is sufficiently sensitive in the infrared domain. An approach towards a quantitative interpretation of the data is suggested and discussed briefly
Multi-Channel Stochastic Variational Inference for the Joint Analysis of Heterogeneous Biomedical Data in Alzheimer's Disease
The joint analysis of biomedical data in Alzheimer's Disease (AD) is
important for better clinical diagnosis and to understand the relationship
between biomarkers. However, jointly accounting for heterogeneous measures
poses important challenges related to the modeling of the variability and the
interpretability of the results. These issues are here addressed by proposing a
novel multi-channel stochastic generative model. We assume that a latent
variable generates the data observed through different channels (e.g., clinical
scores, imaging, ...) and describe an efficient way to estimate jointly the
distribution of both latent variable and data generative process. Experiments
on synthetic data show that the multi-channel formulation allows superior data
reconstruction as opposed to the single channel one. Moreover, the derived
lower bound of the model evidence represents a promising model selection
criterion. Experiments on AD data show that the model parameters can be used
for unsupervised patient stratification and for the joint interpretation of the
heterogeneous observations. Because of its general and flexible formulation, we
believe that the proposed method can find important applications as a general
data fusion technique.Comment: accepted for presentation at MLCN 2018 workshop, in Conjunction with
MICCAI 2018, September 20, Granada, Spai
Open Database of Epileptic EEG with MRI and Postoperational Assessment of Foci—a Real World Verification for the EEG Inverse Solutions
This paper introduces a freely accessible database http://eeg.pl/epi, containing 23 datasets from patients diagnosed with and operated on for drug-resistant epilepsy. This was collected as part of the clinical routine at the Warsaw Memorial Child Hospital. Each record contains (1) pre-surgical electroencephalography (EEG) recording (10–20 system) with inter-ictal discharges marked separately by an expert, (2) a full set of magnetic resonance imaging (MRI) scans for calculations of the realistic forward models, (3) structural placement of the epileptogenic zone, recognized by electrocorticography (ECoG) and post-surgical results, plotted on pre-surgical MRI scans in transverse, sagittal and coronal projections, (4) brief clinical description of each case. The main goal of this project is evaluation of possible improvements of localization of epileptic foci from the surface EEG recordings. These datasets offer a unique possibility for evaluating different EEG inverse solutions. We present preliminary results from a subset of these cases, including comparison of different schemes for the EEG inverse solution and preprocessing. We report also a finding which relates to the selective parametrization of single waveforms by multivariate matching pursuit, which is used in the preprocessing for the inverse solutions. It seems to offer a possibility of tracing the spatial evolution of seizures in time
Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression
Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al
Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components
The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment
utilizing enriched Ge-76 detectors in 2 separate modules inside of a common
solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has
utilized world leading assay sensitivities to develop clean materials and
processes for producing ultra-pure copper and plastic components. This
experiment is now operating, and initial data provide new insights into the
success of cleaning and processing. Post production copper assays after the
completion of Module 1 showed an increase in U and Th contamination in finished
parts compared to starting bulk material. A revised cleaning method and
additional round of surface contamination studies prior to Module 2
construction have provided evidence that more rigorous process control can
reduce surface contamination. This article describes the assay results and
discuss further studies to take advantage of assay capabilities for the purpose
of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
Recommended from our members
Results of the MAJORANA DEMONSTRATOR's Search for Double-Beta Decay of 76Ge to Excited States of 76Se
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a ββ-decay with the prompt emission of one or two γ-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of (0.56 2.1) ⋅ 1024 y. In particular, for the 2v transition to the first 0+ E.S. of 76Se, a lower half-life limit of 0.68 ⋅ 1024 at 90% CL was achieved
- …