6 research outputs found

    Multiplicity fluctuations in relativistic nuclear collisions

    Full text link
    Multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. In the canonical ensemble conservation of three charges (baryon number, electric charge, and strangeness) is enforced. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. Multiplicity distributions and scaled variances for negatively charged hadrons are presented along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than a Poisson reference distribution, and clearly favor expectations for the micro-canonical ensemble.Comment: 6 pages, 3 figure

    Multiplicity fluctuations in relativistic nuclear collisions: statistical model versus experimental data

    Get PDF
    The multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. The microscopic correlator method is used to enforce conservation of three charges - baryon number, electric charge, and strangeness - in the canonical ensemble. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. The multiplicity distributions and the scaled variances for negatively, positively, and all charged hadrons are calculated along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with the preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than the Poisson ones and clearly favor expectations for the micro-canonical ensemble. Thus this is a first observation of the recently predicted suppression of the multiplicity fluctuations in relativistic gases in the thermodynamical limit due to conservation laws.Comment: 27 pages, 9 figures, corrected reference

    Multiplicity Fluctuations in Hadron-Resonance Gas

    Get PDF
    The charged hadron multiplicity fluctuations are considered in the canonical ensemble. The microscopic correlator method is extended to include three conserved charges: baryon number, electric charge and strangeness. The analytical formulae are presented that allow to include resonance decay contributions to correlations and fluctuations. We make the predictions for the scaled variances of negative, positive and all charged hadrons in the most central Pb+Pb (Au+Au) collisions for different collision energies from SIS and AGS to SPS and RHIC.Comment: 19 pages, 4 figure

    Multiplicity Distributions in Canonical and Microcanonical Statistical Ensembles

    Full text link
    The aim of this paper is to introduce a new technique for calculation of observables, in particular multiplicity distributions, in various statistical ensembles at finite volume. The method is based on Fourier analysis of the grand canonical partition function. Taylor expansion of the generating function is used to separate contributions to the partition function in their power in volume. We employ Laplace's asymptotic expansion to show that any equilibrium distribution of multiplicity, charge, energy, etc. tends to a multivariate normal distribution in the thermodynamic limit. Gram-Charlier expansion allows additionally for calculation of finite volume corrections. Analytical formulas are presented for inclusion of resonance decay and finite acceptance effects directly into the system partition function. This paper consolidates and extends previously published results of current investigation into properties of statistical ensembles.Comment: 53 pages, 7 figure
    corecore