17 research outputs found

    Dasatinib reverses Cancer-associated Fibroblasts (CAFs) from primary Lung Carcinomas to a Phenotype comparable to that of normal Fibroblasts

    Get PDF
    Cancer associated fibroblasts (CAFs) play a critical role for growth, invasion, and metastasis of cancer. Therefore, targeting CAFs with small molecule inhibitors may be an attractive anti-tumor strategy. The current study aims to identify small molecule kinase inhibitors affecting CAF's growth and to characterize the biological effects of active compounds on primary CAFs from lung cancer. We screened two individual CAF strains for their sensitivity to a panel of 160 kinase inhibitors. Five kinase inhibitors were identified inhibiting more than 50% of the growth of both cell lines. Three of them were inhibitors of PDGFR at nanomolar concentrations. Therefore, we further tested the FDA approved PDGFR inhibitors Dasatinib, Nilotinib, Sorafenib, and Imatinib. All 37 CAF strains investigated were highly sensitive to Dasatinib at clinically relevant concentrations. Imatinib was slightly less effective, whereas the inhibitory effects of Nilotinib and Sorafenib were significantly less pronounced

    Fibroblast heterogeneity in the cancer wound

    Get PDF
    Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy

    Fibroblast heterogeneity in the cancer wound

    Full text link
    corecore