67 research outputs found
Surface oxide on thin films of yttrium hydride studied by neutron reflectometry
The applicability of standard methods for compositional analysis is limited
for H-containing films. Neutron reflectometry is a powerful, non-destructive
method that is especially suitable for these systems due to the large negative
scattering length of H. In this work we demonstrate how neutron reflectometry
can be used to investigate thin films of yttrium hydride. Neutron reflectometry
gives a strong contrast between the film and the surface oxide layer, enabling
us to estimate the oxide thickness and oxygen penetration depths. A surface
oxide layer of 5-10 nm thickness was found for unprotected yttrium hydride
films
Deuterium Exchange Dynamics in Zr_2NiD_(4.8) Studied by ^2H MAS NMR Spectroscopy
Variable temperature (VT) ^2H magic angle spinning (MAS) spectroscopy was employed to measure deuterium diffusion behavior in the Zr_2NiD_(4.8) phase. ^2H MAS NMR spectrum at ∼190 K provides with well-resolved 4 different site occupancies which can be assigned based on the crystal structure (16k (Zr_2Ni_2), 32m (Zr_3Ni), Zr_4 (16/ and 4b)). As the temperature rises, the ^2H peaks sensitively reflect the exchange behavior among the sites with evident change at around 230 K and reaching a uniform distribution of site occupancies, indistinguishable in NMR timescale, above 245 K. This behavior is reflected by the collapse of the ^2H MAS spectrum into a single peak. From analyses of VT MAS NMR spectra, we were able to extract multiple hopping rates and activation energies among face sharing interstices: for example, 32m ↔ 16/ hopping shows _(τc)=2.8×10^(-4)s at 245 K and E_a = 62.2 kJ/mol
The crystal structure of LiMgAlD 6 from combined neutron and synchrotron X-ray powder diffraction
Abstract LiMgAlH 6 is the intermediate phase when LiMg(AlH 4 ) 3 is heated. It contains 9.4 wt.% hydrogen, of which 4.8 wt.% is released during the decomposition step to MgH 2 and LiH. Deuterated LiMgAlD 6 was prepared by heat-treating LiMg(AlD 4 ) 3 at 130 • C. Powder neutron and synchrotron X-ray diffraction patterns were measured and the structure was refined using the Rietveld technique on both patterns simultaneously. LiMgAlD 6 crystallizes in the trigonal space group P321 with a = 7.9856(4)Å and c = 4.3789(3)Å. The structure consists of isolated AlD 6 octahedra connected through octahedrally coordinated Mg-and Li-atoms
Pseudo-ternary LiBH4-LiCl-P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteries
The properties of the mixed system LiBH4 LiCl P2S5 are studied with respect
to all-solid-state batteries. The studied material undergoes an amorphization
upon heating above 601C, accompanied with increased Li+ conductivity beneficial
for battery electrolyte applications. The measured ionic conductivity is 10-3
Scm-1 at room temperature with an activation energy of 0.40(2) eV after
amorphization. Structural analysis and characterization of the material suggest
that BH4 groups and PS4 may belong to the same molecular structure, where Cl
ions interplay to accommodate the structural unit. Thanks to its conductivity,
ductility and electrochemical stability (up to 5 V, Au vs. Li+/Li), this new
electrolyte is successfully tested in battery cells operated with a cathode
material (layered TiS2, theo. capacity 239 mAh g-1) and Li anode resulting in
93% capacity retention (10 cycles) and notable cycling stability under the
current density 12 mA g-1 (0.05C-rate) at 501C. Further advanced
characterisation by means of operando synchrotron X-ray diffraction in
transmission mode contributes explicitly to a better understanding of the
(de)lithiation processes of solid-state battery electrodes operated at moderate
temperatures
Pseudo-ternary LiBH–LiCl–PS system as structurally disordered bulk electrolyte for all-solid-state lithium batteries
The properties of the mixed system LiBH–LiCl–PS are studied with respect to all-solid-state batteries. The studied material undergoes an amorphization upon heating above 60 °C, accompanied with increased Li conductivity beneficial for battery electrolyte applications. The measured ionic conductivity is ∼10 S cm at room temperature with an activation energy of 0.40(2) eV after amorphization. Structural analysis and characterization of the material suggest that BH groups and PS4 may belong to the same molecular structure, where Cl ions interplay to accommodate the structural unit. Thanks to its conductivity, ductility and electrochemical stability (up to 5 V, Au vs. Li/Li), this new electrolyte is successfully tested in battery cells operated with a cathode material (layered TiS, theo. capacity 239 mA h g) and Li anode resulting in 93% capacity retention (10 cycles) and notable cycling stability under the current density ∼12 mA g (0.05C-rate) at 50 °C. Further advanced characterisation by means of operando synchrotron X-ray diffraction in transmission mode contributes explicitly to a better understanding of the (de)lithiation processes of solid-state battery electrodes operated at moderate temperatures
A new thin film photochromic material: Oxygen-containing yttrium hydride
In this work we report on photochromism in transparent thin film samples of
oxygen-containing yttrium hydride. Exposure to visible and ultraviolet (UV)
light at moderate intensity triggers a decrease in the optical transmission of
visible and infrared (IR) light. The photo-darkening is colour-neutral. We show
that the optical transmission of samples of 500 nm thickness can be reduced by
up to 50% after one hour of illumination with light of moderate intensity. The
reaction is reversible and samples that are left in the dark return to the
initial transparent state. The relaxation time in the dark depends on the
temperature of the sample and the duration of the light exposure. The
photochromic reaction takes place under ambient conditions in the as-deposited
state of the thin-film samples.Comment: Accepted for publication in Solar Energy Materials and Solar Cell
Medeuro : the longing for identity and community among Maltese migrant settlers in North Africa
Based largely on materials held in the Service des Periodiques at the Bibliotheque Nationale de Tunisie in Tunis, and especially on content anaylsis of a 1930s newspaper Melita published in Sousse. this study explores the yearning for and the anguish of a cultural survivance among Maltese migrant settlers in North Africa, above all the retention of Maltese as a language of expression, affinity and identification, at a time when Maltese itself was experiencing a literary rebirth. However, such a campaign is undertaken in a 'non-Maltese' context, where moreover, in addition to separation and distance, the influence of European empires-the French, the British and the Italian-is pronounced, if not dominant, thus interfering with any continued loyalty to one mother tongue or mother country. Masterminding the intellectual push for a collective self-identity anchored in language, literature, history and religion, is a leading francophone litterateur whose family had settled in Algeria from the island of Gozo. What is also offered here, in the annotations, is a fairly comprehensive bibliography of Maltese migrant settlement in northern Africa with special reference to lesser known articles and other publications not available in English.peer-reviewe
Metallic and complex hydride-based electrochemical storage of energy
The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program—H2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes
- …