10 research outputs found

    Gene expression profiling of idiopathic interstitial pneumonias (IIPs): identification of potential diagnostic markers and therapeutic targets

    Get PDF
    Abstract Background Chronic fibrosing idiopathic interstitial pneumonia (IIP) is characterized by alveolar epithelial damage, activation of fibroblast proliferation, and loss of normal pulmonary architecture and function. This study aims to investigate the genetic backgrounds of IIP through gene expression profiling and pathway analysis, and to identify potential biomarkers that can aid in diagnosis and serve as novel therapeutic targets. Methods RNA extracted from lung specimens of 12 patients with chronic fibrosing IIP was profiled using Illumina Human WG-6 v3 BeadChips, and Ingenuity Pathway Analysis was performed to identify altered functional and canonical signaling pathways. For validating the results from gene expression analysis, immunohistochemical staining of 10 patients with chronic fibrosing IIP was performed. Results Ninety-eight genes were upregulated in IIP patients relative to control subjects. Some of the upregulated genes, namely desmoglein 3 (DSG3), protocadherin gamma-A9 (PCDHGA9) and discoidin domain-containing receptor 1 (DDR1) are implicated in cell-cell interaction and/or adhesion; some, namely collagen type VII, alpha 1 (COL7A1), contactin-associated protein-like 3B (CNTNAP3B) and mucin-1 (MUC1) are encoding the extracellular matrix molecule or the molecules involved in cell-matrix interactions; and the others, namely CDC25C and growth factor independent protein 1B (GFI1B) are known to affect cell proliferation by affecting the progression of cell cycle or regulating transcription. According to pathway analysis, alternated pathways in IIP were related to cell death and survival and cellular growth and proliferation, which are more similar to cancer than to inflammatory response and immunological diseases. Using immunohistochemistry, we further validate that DSG3, the most highly upregulated gene, shows higher expression in chronic fibrosing IIP lung as compared to control lung. Conclusion We identified several genes upregulated in chronic fibrosing IIP patients as compared to control, and found genes and pathways implicated in cancer, rather than in inflammatory or immunological disease to play important roles in the pathogenesis of IIPs. Moreover, DSG3 is a novel potential biomarker for chronic fibrosing IIP with its significantly high expression in IIP lung

    ATP1A1 Mutant in Aldosterone-Producing Adenoma Leads to Cell Proliferation

    No full text
    The molecular mechanisms by which ATP1A1 mutation-mediated cell proliferation or tumorigenesis in aldosterone-producing adenomas (APAs) have not been elucidated. First, we investigated whether the APA-associated ATP1A1 L104R mutation stimulated cell proliferation. Second, we aimed to clarify the molecular mechanisms by which the ATP1A1 mutation-mediated cell proliferated. We performed transcriptome analysis in APAs with ATP1A1 mutation. ATP1A1 L104R mutation were modulated in human adrenocortical carcinoma (HAC15) cells (ATP1A1-mutant cells), and we evaluated cell proliferation and molecular signaling events. Transcriptome and immunohistochemical analysis showed that Na/K-ATPase (NKA) expressions in ATP1A1 mutated APA were more abundant than those in non-functioning adrenocortical adenoma or KCNJ5 mutated APAs. The significant increase of number of cells, amount of DNA and S-phase population were shown in ATP1A1-mutant cells. Fluo-4 in ATP1A1-mutant cells were significantly increased. Low concentration of ouabain stimulated cell proliferation in ATP1A1-mutant cells. ATP1A1-mutant cells induced Src phosphorylation, and low concentration of ouabain supplementation showed further Src phosphorylation. We demonstrated that NKAs were highly expressed in ATP1A1 mutant APA, and the mutant stimulated cell proliferation and Src phosphorylation in ATP1A1-mutant cells. NKA stimulations would be a risk factor for the progression and development to an ATP1A1 mutant APA

    Relationship among coronary plaque compliance, coronary risk factors and tissue characteristics evaluated by integrated backscatter intravascular ultrasound

    No full text
    <p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to evaluate the mechanical properties of coronary plaques and plaque behavior, and to elucidate the relationship among tissue characteristics of coronary plaques, mechanical properties and coronary risk factors using integrated backscatter intravascular ultrasound (IB-IVUS).</p> <p>Methods</p> <p>Non-targeted plaques with moderate stenosis (plaque burden at the minimal lumen site: 50-70%) located proximal to the site of the percutaneous coronary intervention target lesions were evaluated by IB-IVUS. Thirty-six plaques (less calcified group: an arc of calcification ≤10°) in 36 patients and 22 plaques (moderately calcified group: 10° < an arc of calcification ≤60°) in 22 patients were evaluated. External elastic membrane volume (EEMV) compliance, lumen volume (LV) compliance, plaque volume (PV) response (difference between PV in systole and diastole), EEM area stiffness index were measured at the minimal lumen site. Relative lipid volume (lipid volume/internal elastic membrane volume) was calculated by IB-IVUS.</p> <p>Results</p> <p>In the less calcified group, there was a significant correlation between EEMV compliance and the relative lipid volume (r = 0.456, p = 0.005). There was a significant inverse correlation between EEM area stiffness index and the relative lipid volume (p = 0.032, r = −0.358). The LV compliance and EEM area stiffness index were significantly different in the diabetes mellitus (DM) group than in the non-DM group (1.32 ± 1.49 vs. 2.47 ± 1.79%/10 mmHg, p =0.014 and 28.3 ± 26.0 vs. 15.7 ± 17.2, p =0.020). The EEMV compliance and EEM area stiffness index were significantly different in the hypertension (HTN) group than in the non-HTN group (0.77 ± 0.68 vs. 1.57 ± 0.95%/10 mmHg, p =0.012 and 26.5 ± 24.3 vs. 13.0 ± 16.7, p =0.020). These relationships were not seen in the moderately calcified group.</p> <p>Conclusion</p> <p>The present study provided new findings that there was a significant correlation between mechanical properties and tissue characteristics of coronary arteries. In addition, our results suggested that the EEMV compliance and the LV compliance were independent and the compliance was significantly impaired in the patients with DM and/or HTN. Assessment of coronary mechanical properties during PCI may provide us with useful information regarding the risk stratification of patients with coronary heart disease.</p
    corecore