11 research outputs found

    Cellular localization of nucleolin determines the prognosis in cancers: a meta-analysis

    Get PDF
    Nucleolin (NCL) is a multifunctional protein expressed in the nucleus, cytoplasm, and cell membrane. Overexpression of NCL has a controversial role as a poor prognostic marker in cancers. In this study, a meta-analysis was performed to evaluate the prognostic value of NCL in different subcellular localizations (cytoplasmic (CyNCL) and nuclear (NuNCL)) across a range of cancers. PubMed was searched for relevant publications. Data were extracted and analyzed from 12 studies involving 1221 patients with eight cancer types. The results revealed high total NCL was significantly associated with poor overall survival (OS) (HR = 2.85 (1.94, 4.91), p < 0.00001, I2 = 59%) and short disease-free survival (DFS) (HR = 3.57 (2.76, 4.62), p < 0.00001, I2 = 2%). High CyNCL was significantly associated with poor OS (HR = 4.32 (3.01, 6.19), p < 0.00001, I2 = 0%) and short DFS (HR = 3.00 (2.17, 4.15), p < 0.00001, I2 = 0%). In contrast, high NuNCL correlated with increased patient OS (HR = 0.42 (0.20, 0.86), p = 0.02, I2 = 66%), with no significant correlation to DFS observed (HR = 0.46 (0.19, 1.14), p = 0.09, I2 = 57%). This study supports the role of subcellular NCL as a poor prognostic cancer biomarker

    High expression of STAT3 within the tumour-associated stroma predicts poor outcome in breast cancer patients

    Get PDF
    Introduction: Triple-negative breast cancer (TNBC) patients have the poorest clinical outcomes compared to other molecular subtypes of breast cancer. IL6/JAK/STAT3 signalling is upregulated in breast cancer; however, there is limited evidence for its role in TNBC. This study aimed to assess the expression of IL6/JAK/STAT3 in TNBC as a prognostic biomarker. Methods: Tissue microarrays consisting of breast cancer specimens from a retrospective cohort (n = 850) were stained for IL6R, JAK1, JAK2 and STAT3 via immunohistochemistry. Staining intensity was assessed by weighted histoscore and analysed for association with survival/clinical characteristics. In a subset of patients (n = 14) bulk transcriptional profiling was performed using TempO-Seq. Nanostring GeoMx® digital spatial profiling was utilised to establish the differential spatial gene expression in high STAT3 tumours. Results: In TNBC patients, high expression of stromal STAT3 was associated with reduced cancer-specific survival (HR = 2.202, 95% CI: 1.148–4.224, log rank p = 0.018). TNBC patients with high stromal STAT3 had reduced CD4+ T-cell infiltrates within the tumour (p = 0.001) and higher tumour budding (p = 0.003). Gene set enrichment analysis (GSEA) of bulk RNA sequencing showed high stromal STAT3 tumours were characterised by enrichment of IFNγ, upregulation of KRAS signalling and inflammatory signalling Hallmark pathways. GeoMx™ spatial profiling showed high stromal STAT3 samples. Pan cytokeratin (panCK)-negative regions were enriched for CD27 (p < 0.001), CD3 (p < 0.05) and CD8 (p < 0.001). In panCK-positive regions, high stromal STAT3 regions had higher expression of VEGFA (p < 0.05). Conclusion: High expression of IL6/JAK/STAT3 proteins was associated with poor prognosis and characterised by distinct underlying biology in TNBC

    Spatial transcriptomic analysis of tumour with high and low CAIX expression in TNBC tissue samples using GeoMxâ„¢ RNA assay

    Get PDF
    Purpose. Prognostic significance and gene signatures associated with carbonic anhydrase IX (CAIX) was investigated in triple negative breast cancer (TNBC) patients. Methods. Immunohistochemistry (IHC) for CAIX was performed in tissue microarrays (TMAs) of 136 TNBC patients.In a subset of 52 patients Digital Spatial Profiler (DSP) was performed in tumour (pan-cytokeratin+) and stroma (pan-cytokeratin-). Differentially expressed genes (DEGs) with P<0.05 and fold change ≥1 or ≤-1 were identified. Four genes were validated at the protein level. Result. Cytoplasmic CAIX expression was independently associated with poor recurrence free survival in TNBC patients [hazard ratio (HR)=6.59, 95% confidence interval (CI): 1.47-29.58, P=0.014]. DEG analysis identified 4 up-regulated genes (CD68, HIF1A, pan-melanocyte, and VSIR) in the tumour region and 9 down-regulated genes in the stromal region (CD86, CD3E, MS4A1, BCL2, CCL5, NKG7, PTPRC, CD27, and FAS) when low versus high CAIX expression was explored. Employing IHC, high CD68 and HIF-1α was associated with poorer prognosis and high BCL2 and CD3 was associated with good prognosis. Conclusions. DSP technology identified DEGs in TNBC. Selected genes validated by IHC showed involvement of CD3 and BCL2 expression within stroma and HIF-1α, and CD68 expression within tumour. However, further functional analysis is warranted

    Histopathological tumour microenvironment score independently predicts outcome in primary operable colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a heterogenous malignancy and research is focused on identifying novel ways to subtype patients. In this study, a novel classification system, tumour microenvironment score (TMS), was devised based on Klintrup–Mäkinen grade (KMG), tumour stroma percentage (TSP), and tumour budding. TMS was performed using a haematoxylin and eosin (H&E)-stained section from retrospective CRC discovery and validation cohorts (n = 1,030, n = 787). TMS0 patients had high KMG, TMS1 were low for KMG, TSP, and budding, TMS2 were high for budding, or TSP and TMS3 were high for TSP and budding. Scores were assessed for association with survival and clinicopathological characteristics. Mutational landscaping and Templated Oligo-Sequencing (TempO-Seq) profiling were performed to establish differences in the underlying biology of TMS. TMS was independently prognostic in both cohorts (p < 0.001, p < 0.001), with TMS3 predictive of the shortest survival times. TMS3 was associated with adverse clinical features including sidedness, local and distant recurrence, higher T stage, higher N stage, and presence of margin involvement. Gene set enrichment analysis of TempO-Seq data showed higher expression of genes associated with hallmarks of cancer pathways including epithelial to mesenchymal transition (p < 0.001), IL2 STAT5 signalling (p = 0.007), and angiogenesis (p = 0.017) in TMS3. Additionally, enrichment of immunosuppressive immune signatures was associated with TMS3 classification. In conclusion, TMS represents a novel and clinically relevant method for subtyping CRC patients from a single H&E-stained tumour section

    Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target

    Get PDF
    The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC

    Spatial transcriptomic analysis of tumoural (PanCK+) and stromal (PanCK-) regions in TNBC tissue samples using an immunoncology probe-based panel on the GeoMxâ„¢ Digital Spatial Profiler (DSP)

    Full text link
    This dataset was obtained by in-situ hybridisation of probes to a tissue microarray (TMA) of human triple-negative breast cancer (TNBC) tissue. The purpose of this dataset is to allow interrogation of the differential transcriptomic profiles of tumoural (PanCK+) and stromal (PanCK-) regions of TNBC disease to further investigate disease pathogenesis and spark hypothesis-driven research into potential new therapies and prognostic markers for patients with this subtype of disease

    Molecular mechanisms of tumour budding and its association with microenvironment in colorectal cancer

    No full text
    Colorectal cancer (CRC) is the third most common cancer worldwide. Poor survival of CRC associated with the development of tumour metastasis led to the investigation of the potential biomarkers to predict outcomes in CRC patients. Tumour budding (TB) is a well-known independent prognostic marker for poor survival and disease metastasis. Therefore, it has been suggested that TB status is included in routine clinicopathological factors for risk assessment in CRC. In contrast with a vast majority of studies regarding the prognostic power of TB, there is no clear evidence pertaining to the underlying molecular mechanism driving this phenotype, or an understanding of TB relationship with the tumour microenvironment (TME). The aim of the present study is to present a comprehensive review of TB and tumour cell signalling pathways together with the cross-talk of immune cells that could drive TB formation in CRC

    Systematic review of tumour budding and association with common mutations in patients with colorectal cancer

    No full text
    Introduction: Despite a well-known prognostic role in colorectal cancer, the genomic profiling of tumour budding remains to be elucidated. We aim to review the association of common mutations with tumour budding. Methods: A systematic review of studies relating to tumour budding and genetic mutation in CRC was performed. The relationship between mutational status and tumour budding was evaluated using meta-analysis. Results: A total of 6153 patients from 17 articles were included. According to the meta-analysis, high-grade tumour budding was significantly associated with KRAS mutation (OR = 1.52, 95%CI: 1.13-2.02, P = 0.005) and MSS/pMMR (OR = 2.06, 95%CI: 1.42-2.97, P = 0.0001). Conclusion: The significant association between high-grade tumour budding and mutated KRAS or MSS/pMMR may suggest a role of these mutations in the development of the tumour budding phenotype and be useful for stratifying patient outcome in CRC

    JAK/STAT3 represents a therapeutic target for colorectal cancer patients with stromal-rich tumors

    No full text
    Abstract Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression
    corecore