56 research outputs found
Novel Oppositional Defiant Disorder 6 Months After Traumatic Brain Injury in Children and Adolescents
OBJECTIVE: The investigators aimed to assess predictive factors of novel oppositional defiant disorder (ODD) among children and adolescents in the first 6 months following traumatic brain injury (TBI).
METHODS: Children ages 5-14 years who experienced a TBI were recruited from consecutive admissions to five hospitals. Testing of a biopsychosocial model that may elucidate the development of novel ODD included assessment soon after injury (baseline) of preinjury characteristics, including psychiatric disorders, adaptive function, family function, psychosocial adversity, family psychiatric history, socioeconomic status, injury severity, and postinjury processing speed (which may be a proxy for brain injury). MRI analyses were also conducted to examine potential brain lesions. Psychiatric outcome, including that of novel ODD, was assessed 6 months after the injury.
RESULTS: A total of 177 children and adolescents were recruited for the study, and 134 who were without preinjury ODD, conduct disorder, or disruptive behavior disorder not otherwise specified (DBD NOS) returned for the 6-month assessment. Of those who returned 6 months postinjury, 11 (8.2%) developed novel ODD, and none developed novel conduct disorder or DBD NOS. Novel ODD was significantly associated with socioeconomic status, preinjury family functioning, psychosocial adversity, and processing speed.
CONCLUSIONS: These findings show that an important minority of children with TBI developed ODD. Psychosocial and injury-related variables, including socioeconomic status, lower family function, psychosocial adversity, and processing speed, significantly increase risk for this outcome
Fatigue, reduced sleep quality and restless legs syndrome in Charcot-Marie-Tooth disease: a web-based survey
To investigate the prevalence of fatigue, daytime sleepiness, reduced sleep quality, and restless legs syndrome (RLS) in a large cohort of patients with Charcot-Marie-Tooth disease (CMT) and their impact on health-related quality of life (HRQoL). Participants of a web-based survey answered the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index, the Multidimensional Fatigue Inventory, and, if the diagnostic criteria of RLS were met, the International RLS Severity Scale. Diagnosis of RLS was affirmed in screen-positive patients by means of a standardized telephone interview. HRQoL was assessed by using the SF-36 questionnaire. Age- and sex-matched control subjects were recruited from waiting relatives of surgical outpatients. 227 adult self-reported CMT patients answered the above questionnaires, 42.9% were male, and 57.1% were female. Age ranged from 18 to 78 years. Compared to controls (n = 234), CMT patients reported significantly higher fatigue, a higher extent and prevalence of daytime sleepiness and worse sleep quality. Prevalence of RLS was 18.1% in CMT patients and 5.6% in controls (p = 0.001). RLS severity was correlated with worse sleep quality and reduced HRQoL. Women with CMT were affected more often and more severely by RLS than male patients. With regard to fatigue, sleep quality, daytime sleepiness, RLS prevalence, RLS severity, and HRQoL, we did not find significant differences between genetically distinct subtypes of CMT. HRQoL is reduced in CMT patients which may be due to fatigue, sleep-related symptoms, and RLS in particular. Since causative treatment for CMT is not available, sleep-related symptoms should be recognized and treated in order to improve quality of life
Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study
Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses
Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?
Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
ESI and MALDI LC/MS-MS approaches for large scale protein, identification and quantification : Are they equivalent?
An approach for large scale protein identification and quantification was described. The peptide mixtures from the strong cation exchange (SCX) fractionated protein digests were separated and analyzed by HPLC MS/MS. The human fibrobalst nuclei were purified from stimulated and non-stimulated cells. The quantification results with MALDI and ESI LC/MS were shown to be identical within experimental error
High-performance thin layer chromatography based assay and stress study of a rare steroidal alkaloid solanopubamine in six species of Solanum grown in Saudi Arabia
The present study describes a method developed for quantification and stability study of a rare steroidal alkaloid solanopubamine (SPN) in aerial parts of six different species of genus Solanum extracted with two different solvents. The Solanum species selected for investigation include S. schimperianum (SS), S. villosum (SV), S. coagulans (SC), S. glabratum (SG), S. incanum (SI) and S. nigrum (SN). The estimation of SPN was done by a validated high-performance thin layer chromatography method. The developed chromatographic system was found to give a sharp spot for solanopubamine at Rf = 0.39 ± 0.01. The steroidal alkaloid SPN was observed to be present only in extracts of aerial parts of S. schimperianum. The sensitivity of developed method produced 40 ng and 115 ng band−1, respectively as LOD and LOQ values. The percentage yield of SPN in aerial parts of S. schimperianum extracted by ethanol (95%) only and a mixture of ethanol and ammonium hydroxide (6:4) was found to be 1.03 w/w and 2.09 w/w, respectively. Stability studies of SPN exhibited the maximum (100%) degradation in an alkaline environment and H2O2 treated samples and 61.4% in acidic conditions. The SPN was found to be significantly stable against UV exposure, photo-oxidation and at room temperature while 13.83% and 57.88% destruction has been observed when exposed to dry heat at 40 °C and 60 °C, respectively
Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents
We describe here a multiplexed protein quantitation strategy that provides relative and absolute measurements of proteins in complex mixtures. At the core of this methodology is a multiplexed set of isobaric reagents that yield amine-derivatized peptides. The derivatized peptides are indistinguishable in MS, but exhibit intense low-mass MS/MS signature ions that support quantitation. In this study, we have examined the global protein expression of a wild-type yeast strain and the isogenic upf1Delta and xrn1Delta mutant strains that are defective in the nonsense-mediated mRNA decay and the general 5' to 3' decay pathways, respectively. We also demonstrate the use of 4-fold multiplexing to enable relative protein measurements simultaneously with determination of absolute levels of a target protein using synthetic isobaric peptide standards. We find that inactivation of Upf1p and Xrn1p causes common as well as unique effects on protein expression
- …